Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133368940> ?p ?o ?g. }
- W3133368940 endingPage "105962" @default.
- W3133368940 startingPage "105962" @default.
- W3133368940 abstract "Timely and accurate information on winter wheat distribution and planting area is of great significance to food security, policy-making, and ecological function evaluation. However, several problems exist in the traditional winter wheat mapping approaches using remote sensing data, such as the limited spatial resolution of the remote sensing image data, the utilization of full-season remote sensing data, and the heavy dependence on training data. In this context, we propose a method based on the Sentinel-2 time series data with a 10-m spatial resolution to map winter wheat in Shandong, China. This is a novel, easy-to-operate, and effective mapping method, which is called the automated early-season method to map winter wheat using the Sentinel-2 data (AEMMS). The model is based on the assumption that the biomass accumulated by winter crops (mainly consisting of winter wheat and garlic in Shandong province) is gradually increasing and other vegetation is gradually decreasing in the early-season phenological window phase. In addition, winter wheat is the crop that accumulates the most biomass among all the winter crops in Shandong province, and the normalized difference vegetation index (NDVI) value of winter wheat is generally higher than that of garlic. We designe five phenological metrics and a series of classification rules for winter wheat discrimination. The AEMMS method has the following advantages: (1) it achieves high spatial resolution winter wheat mapping with a 10-m spatial resolution; (2) it is an early-season mapping method, which provides winter wheat maps nearly 5 months before harvest; and (3) it is automatic and needs no training sample data. The AEMMS method was applied in Shandong, China, to discriminate winter wheat for the 2017–2018 season. Winter wheat areas were derived in all 17 of the municipal administrative regions of Shandong province, and a strong correlation was observed between the derived winter wheat areas and the official statistics, with the coefficient of determination reaching 0.8973. A high mapping accuracy was also achieved in Jiaxiang County using the AEMMS method, with an overall accuracy of 97.80% and a kappa coefficient of 0.9368." @default.
- W3133368940 created "2021-03-01" @default.
- W3133368940 creator A5036283525 @default.
- W3133368940 creator A5042675351 @default.
- W3133368940 creator A5046141608 @default.
- W3133368940 creator A5060481078 @default.
- W3133368940 date "2021-03-01" @default.
- W3133368940 modified "2023-10-13" @default.
- W3133368940 title "An automated early-season method to map winter wheat using time-series Sentinel-2 data: A case study of Shandong, China" @default.
- W3133368940 cites W1519458007 @default.
- W3133368940 cites W1966845328 @default.
- W3133368940 cites W1972226891 @default.
- W3133368940 cites W1973485632 @default.
- W3133368940 cites W1982575939 @default.
- W3133368940 cites W1984667420 @default.
- W3133368940 cites W1991861340 @default.
- W3133368940 cites W2001728294 @default.
- W3133368940 cites W2005323567 @default.
- W3133368940 cites W2008085934 @default.
- W3133368940 cites W2013973135 @default.
- W3133368940 cites W2021662310 @default.
- W3133368940 cites W2030165874 @default.
- W3133368940 cites W2043490055 @default.
- W3133368940 cites W2056435747 @default.
- W3133368940 cites W2063623478 @default.
- W3133368940 cites W2065800647 @default.
- W3133368940 cites W2099507093 @default.
- W3133368940 cites W2113410727 @default.
- W3133368940 cites W2113503197 @default.
- W3133368940 cites W2116627051 @default.
- W3133368940 cites W2160575028 @default.
- W3133368940 cites W2164873977 @default.
- W3133368940 cites W2212980623 @default.
- W3133368940 cites W2261059368 @default.
- W3133368940 cites W2273708466 @default.
- W3133368940 cites W2307094448 @default.
- W3133368940 cites W2328310846 @default.
- W3133368940 cites W2354088966 @default.
- W3133368940 cites W2463336507 @default.
- W3133368940 cites W2496925721 @default.
- W3133368940 cites W2527777740 @default.
- W3133368940 cites W2585654016 @default.
- W3133368940 cites W2604086375 @default.
- W3133368940 cites W2610947800 @default.
- W3133368940 cites W2622193467 @default.
- W3133368940 cites W2626395602 @default.
- W3133368940 cites W2730238284 @default.
- W3133368940 cites W2737836416 @default.
- W3133368940 cites W2767953525 @default.
- W3133368940 cites W2774723322 @default.
- W3133368940 cites W2790528326 @default.
- W3133368940 cites W2791364611 @default.
- W3133368940 cites W2811103605 @default.
- W3133368940 cites W2907943085 @default.
- W3133368940 cites W2967153333 @default.
- W3133368940 cites W2973832355 @default.
- W3133368940 cites W2986829670 @default.
- W3133368940 cites W3012181369 @default.
- W3133368940 cites W3042824180 @default.
- W3133368940 doi "https://doi.org/10.1016/j.compag.2020.105962" @default.
- W3133368940 hasPublicationYear "2021" @default.
- W3133368940 type Work @default.
- W3133368940 sameAs 3133368940 @default.
- W3133368940 citedByCount "21" @default.
- W3133368940 countsByYear W31333689402021 @default.
- W3133368940 countsByYear W31333689402022 @default.
- W3133368940 countsByYear W31333689402023 @default.
- W3133368940 crossrefType "journal-article" @default.
- W3133368940 hasAuthorship W3133368940A5036283525 @default.
- W3133368940 hasAuthorship W3133368940A5042675351 @default.
- W3133368940 hasAuthorship W3133368940A5046141608 @default.
- W3133368940 hasAuthorship W3133368940A5060481078 @default.
- W3133368940 hasConcept C115540264 @default.
- W3133368940 hasConcept C137580998 @default.
- W3133368940 hasConcept C137660486 @default.
- W3133368940 hasConcept C142724271 @default.
- W3133368940 hasConcept C1549246 @default.
- W3133368940 hasConcept C166957645 @default.
- W3133368940 hasConcept C205649164 @default.
- W3133368940 hasConcept C25989453 @default.
- W3133368940 hasConcept C2776133958 @default.
- W3133368940 hasConcept C2777016058 @default.
- W3133368940 hasConcept C2779343474 @default.
- W3133368940 hasConcept C3018661444 @default.
- W3133368940 hasConcept C39432304 @default.
- W3133368940 hasConcept C51417038 @default.
- W3133368940 hasConcept C62649853 @default.
- W3133368940 hasConcept C6557445 @default.
- W3133368940 hasConcept C71924100 @default.
- W3133368940 hasConcept C86803240 @default.
- W3133368940 hasConcept C97137747 @default.
- W3133368940 hasConceptScore W3133368940C115540264 @default.
- W3133368940 hasConceptScore W3133368940C137580998 @default.
- W3133368940 hasConceptScore W3133368940C137660486 @default.
- W3133368940 hasConceptScore W3133368940C142724271 @default.
- W3133368940 hasConceptScore W3133368940C1549246 @default.
- W3133368940 hasConceptScore W3133368940C166957645 @default.
- W3133368940 hasConceptScore W3133368940C205649164 @default.