Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133383725> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3133383725 abstract "Abstract. Homchan S, Gupta YM. 2021. Short communication: Insect detection using a machine learning model. Nusantara Bioscience 13: 69-73. The key step in characterizing any organisms and their gender highly relies on correct identification of specimens. Here we aim to classify insect and their sex by supervised machine learning (ML) model. In the present preliminary study, we used a newly developed graphical user interface (GUI) based platform to create a machine learning model for classifying two economically important cricket species. This study aims to develop ML model for Acheta domesticus and Gryllus bimaculatus species classification and sexing. An experimental investigation was conducted to use Google teachable machine GTM for preliminary cricket species detection and sexing using pre-processed 2646 still images. An alternative method for image processing is used to extract still images from high-resolution video for optimum accuracy. Out of the 2646 images, 2247 were used for training ML model and 399 were used for testing the trained model. The prediction accuracy of trained model had 100 % accuracy to identify both species and their sex. The developed trained model can be integrated into the mobile application for cricket species classification and sexing. The present study may guide professionals in the field of life science to develop ML models based on image classification, and serve as an example for researchers and taxonomists to employ machine learning for species classification and sexing in the preliminary analysis. Apart from our main goals, the paper also intends to provide the possibility of ML models in biological studies and to conduct the preliminary assessment of biodiversity." @default.
- W3133383725 created "2021-03-01" @default.
- W3133383725 creator A5014614966 @default.
- W3133383725 creator A5029257589 @default.
- W3133383725 date "2021-02-20" @default.
- W3133383725 modified "2023-09-24" @default.
- W3133383725 title "Short communication: Insect detection using a machine learning model" @default.
- W3133383725 cites W2051864286 @default.
- W3133383725 cites W2161618816 @default.
- W3133383725 cites W2166615616 @default.
- W3133383725 cites W2285671993 @default.
- W3133383725 cites W2390768136 @default.
- W3133383725 cites W2419064013 @default.
- W3133383725 cites W2612445135 @default.
- W3133383725 cites W2743601682 @default.
- W3133383725 cites W2792447460 @default.
- W3133383725 cites W2923966159 @default.
- W3133383725 cites W3004934455 @default.
- W3133383725 cites W3016983104 @default.
- W3133383725 cites W3030508559 @default.
- W3133383725 cites W3039846188 @default.
- W3133383725 cites W3047489882 @default.
- W3133383725 cites W3054787308 @default.
- W3133383725 cites W3084264417 @default.
- W3133383725 cites W3092254810 @default.
- W3133383725 cites W3092639985 @default.
- W3133383725 doi "https://doi.org/10.13057/nusbiosci/n130110" @default.
- W3133383725 hasPublicationYear "2021" @default.
- W3133383725 type Work @default.
- W3133383725 sameAs 3133383725 @default.
- W3133383725 citedByCount "1" @default.
- W3133383725 countsByYear W31333837252022 @default.
- W3133383725 crossrefType "journal-article" @default.
- W3133383725 hasAuthorship W3133383725A5014614966 @default.
- W3133383725 hasAuthorship W3133383725A5029257589 @default.
- W3133383725 hasBestOaLocation W31333837251 @default.
- W3133383725 hasConcept C119857082 @default.
- W3133383725 hasConcept C154945302 @default.
- W3133383725 hasConcept C18903297 @default.
- W3133383725 hasConcept C2779383911 @default.
- W3133383725 hasConcept C2781313515 @default.
- W3133383725 hasConcept C41008148 @default.
- W3133383725 hasConcept C60644358 @default.
- W3133383725 hasConcept C86803240 @default.
- W3133383725 hasConceptScore W3133383725C119857082 @default.
- W3133383725 hasConceptScore W3133383725C154945302 @default.
- W3133383725 hasConceptScore W3133383725C18903297 @default.
- W3133383725 hasConceptScore W3133383725C2779383911 @default.
- W3133383725 hasConceptScore W3133383725C2781313515 @default.
- W3133383725 hasConceptScore W3133383725C41008148 @default.
- W3133383725 hasConceptScore W3133383725C60644358 @default.
- W3133383725 hasConceptScore W3133383725C86803240 @default.
- W3133383725 hasIssue "1" @default.
- W3133383725 hasLocation W31333837251 @default.
- W3133383725 hasOpenAccess W3133383725 @default.
- W3133383725 hasPrimaryLocation W31333837251 @default.
- W3133383725 hasRelatedWork W2961085424 @default.
- W3133383725 hasRelatedWork W3046775127 @default.
- W3133383725 hasRelatedWork W3133383725 @default.
- W3133383725 hasRelatedWork W3170094116 @default.
- W3133383725 hasRelatedWork W4205958290 @default.
- W3133383725 hasRelatedWork W4285260836 @default.
- W3133383725 hasRelatedWork W4286629047 @default.
- W3133383725 hasRelatedWork W4306321456 @default.
- W3133383725 hasRelatedWork W4306674287 @default.
- W3133383725 hasRelatedWork W4224009465 @default.
- W3133383725 hasVolume "13" @default.
- W3133383725 isParatext "false" @default.
- W3133383725 isRetracted "false" @default.
- W3133383725 magId "3133383725" @default.
- W3133383725 workType "article" @default.