Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133399132> ?p ?o ?g. }
- W3133399132 abstract "Real-world multiobjective optimization problems usually involve conflicting objectives that change over time, which requires the optimization algorithms to quickly track the Pareto optimal front (POF) when the environment changes. In recent years, evolutionary algorithms based on prediction models have been considered promising. However, most existing approaches only make predictions based on the linear correlation between a finite number of optimal solutions in two or three previous environments. These incomplete information extraction strategies may lead to low prediction accuracy in some instances. In this paper, a novel prediction algorithm based on incremental support vector machine (ISVM) is proposed, called ISVM-DMOEA. We treat the solving of dynamic multiobjective optimization problems (DMOPs) as an online learning process, using the continuously obtained optimal solution to update an incremental support vector machine without discarding the solution information at earlier time. ISVM is then used to filter random solutions and generate an initial population for the next moment. To overcome the obstacle of insufficient training samples, a synthetic minority oversampling strategy is implemented before the training of ISVM. The advantage of this approach is that the nonlinear correlation between solutions can be explored online by ISVM, and the information contained in all historical optimal solutions can be exploited to a greater extent. The experimental results and comparison with chosen state-of-the-art algorithms demonstrate that the proposed algorithm can effectively tackle dynamic multiobjective optimization problems." @default.
- W3133399132 created "2021-03-01" @default.
- W3133399132 creator A5017961841 @default.
- W3133399132 creator A5023880784 @default.
- W3133399132 creator A5066869045 @default.
- W3133399132 creator A5078442596 @default.
- W3133399132 creator A5080293162 @default.
- W3133399132 creator A5081767617 @default.
- W3133399132 date "2021-02-24" @default.
- W3133399132 modified "2023-10-14" @default.
- W3133399132 title "An Online Prediction Approach Based on Incremental Support Vector Machine for Dynamic Multiobjective Optimization" @default.
- W3133399132 cites W1496765098 @default.
- W3133399132 cites W1501873207 @default.
- W3133399132 cites W1574490530 @default.
- W3133399132 cites W1968173975 @default.
- W3133399132 cites W1978370034 @default.
- W3133399132 cites W1992622214 @default.
- W3133399132 cites W1998898918 @default.
- W3133399132 cites W2018300124 @default.
- W3133399132 cites W2054984152 @default.
- W3133399132 cites W2058658017 @default.
- W3133399132 cites W2071245253 @default.
- W3133399132 cites W2087347434 @default.
- W3133399132 cites W2108807072 @default.
- W3133399132 cites W2126105956 @default.
- W3133399132 cites W2133508555 @default.
- W3133399132 cites W2135236309 @default.
- W3133399132 cites W2137130066 @default.
- W3133399132 cites W2139848708 @default.
- W3133399132 cites W2140886193 @default.
- W3133399132 cites W2147573707 @default.
- W3133399132 cites W2148143831 @default.
- W3133399132 cites W2155398148 @default.
- W3133399132 cites W2159126105 @default.
- W3133399132 cites W2165171393 @default.
- W3133399132 cites W2168314961 @default.
- W3133399132 cites W2319729710 @default.
- W3133399132 cites W2343098676 @default.
- W3133399132 cites W2344134522 @default.
- W3133399132 cites W2484930447 @default.
- W3133399132 cites W2583496274 @default.
- W3133399132 cites W2612032753 @default.
- W3133399132 cites W2728662587 @default.
- W3133399132 cites W2751605210 @default.
- W3133399132 cites W2752455195 @default.
- W3133399132 cites W2770581177 @default.
- W3133399132 cites W2773474358 @default.
- W3133399132 cites W2787507140 @default.
- W3133399132 cites W2808787830 @default.
- W3133399132 cites W2888985868 @default.
- W3133399132 cites W2890747025 @default.
- W3133399132 cites W2906967888 @default.
- W3133399132 cites W2915016429 @default.
- W3133399132 cites W2923639984 @default.
- W3133399132 cites W2954424132 @default.
- W3133399132 cites W2963014601 @default.
- W3133399132 cites W3027186203 @default.
- W3133399132 cites W3037258640 @default.
- W3133399132 cites W3043183042 @default.
- W3133399132 cites W3043716603 @default.
- W3133399132 cites W3080519003 @default.
- W3133399132 cites W3120732119 @default.
- W3133399132 doi "https://doi.org/10.48550/arxiv.2102.12133" @default.
- W3133399132 hasPublicationYear "2021" @default.
- W3133399132 type Work @default.
- W3133399132 sameAs 3133399132 @default.
- W3133399132 citedByCount "0" @default.
- W3133399132 crossrefType "posted-content" @default.
- W3133399132 hasAuthorship W3133399132A5017961841 @default.
- W3133399132 hasAuthorship W3133399132A5023880784 @default.
- W3133399132 hasAuthorship W3133399132A5066869045 @default.
- W3133399132 hasAuthorship W3133399132A5078442596 @default.
- W3133399132 hasAuthorship W3133399132A5080293162 @default.
- W3133399132 hasAuthorship W3133399132A5081767617 @default.
- W3133399132 hasBestOaLocation W31333991321 @default.
- W3133399132 hasConcept C111919701 @default.
- W3133399132 hasConcept C11413529 @default.
- W3133399132 hasConcept C119857082 @default.
- W3133399132 hasConcept C12267149 @default.
- W3133399132 hasConcept C126255220 @default.
- W3133399132 hasConcept C137836250 @default.
- W3133399132 hasConcept C144024400 @default.
- W3133399132 hasConcept C149923435 @default.
- W3133399132 hasConcept C154945302 @default.
- W3133399132 hasConcept C2780735816 @default.
- W3133399132 hasConcept C2908647359 @default.
- W3133399132 hasConcept C33923547 @default.
- W3133399132 hasConcept C41008148 @default.
- W3133399132 hasConcept C68781425 @default.
- W3133399132 hasConcept C98045186 @default.
- W3133399132 hasConceptScore W3133399132C111919701 @default.
- W3133399132 hasConceptScore W3133399132C11413529 @default.
- W3133399132 hasConceptScore W3133399132C119857082 @default.
- W3133399132 hasConceptScore W3133399132C12267149 @default.
- W3133399132 hasConceptScore W3133399132C126255220 @default.
- W3133399132 hasConceptScore W3133399132C137836250 @default.
- W3133399132 hasConceptScore W3133399132C144024400 @default.
- W3133399132 hasConceptScore W3133399132C149923435 @default.
- W3133399132 hasConceptScore W3133399132C154945302 @default.
- W3133399132 hasConceptScore W3133399132C2780735816 @default.