Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133428118> ?p ?o ?g. }
- W3133428118 endingPage "1814" @default.
- W3133428118 startingPage "1804" @default.
- W3133428118 abstract "Purpose Computed tomography (CT)‐derived ventilation methods compute respiratory induced volume changes as a surrogate for pulmonary ventilation. Currently, there are no known methods to derive perfusion information from noncontrast CT. We introduce a novel CT‐Perfusion (CT‐P) method for computing the magnitude mass changes apparent on dynamic noncontrast CT as a surrogate for pulmonary perfusion. Methods CT‐Perfusion is based on a mass conservation model which describes the unknown mass change as a linear combination of spatially corresponding inhale and exhale HU estimated voxel densities. CT‐P requires a deformable image registration (DIR) between the inhale/exhale lung CT pair, a preprocessing lung volume segmentation, and an estimate for the Jacobian of the DIR transformation. Given this information, the CT‐P image, which provides the magnitude mass change for each voxel within the lung volume, is formulated as the solution to a constrained linear least squares problem defined by a series of subregional mean magnitude mass change measurements. Similar to previous robust CT‐ventilation methods, the amount of uncertainty in a subregional sample mean measurement is related to measurement resolution and can be characterized with respect to a tolerance parameter . Spatial Spearman correlation between single photon emission CT perfusion (SPECT‐P) and the proposed CT‐P method was assessed in two patient cohorts via a parameter sweep of . The first cohort was comprised of 15 patients diagnosed with pulmonary embolism (PE) who had SPECT‐P and 4DCT imaging acquired within 24 h of PE diagnosis. The second cohort was comprised of 15 nonsmall cell lung cancer patients who had SPECT‐P and 4DCT images acquired prior to radiotherapy. For each test case, CT‐P images were computed for 30 different uncertainty parameter values, uniformly sampled from the range [0.01, 0.125], and the Spearman correlation between the SPECT‐P and the resulting CT‐P images were computed. Results The median correlations between CT‐P and SPECT‐P taken over all 30 test cases ranged between 0.49 and 0.57 across the parameter sweep. For the optimal tolerance τ = 0.0385, the CT‐P and SPECT‐P correlations across all 30 test cases ranged between 0.02 and 0.82. A one‐sample sign test was applied separately to the PE and lung cancer cohorts. A low Spearmen correlation of 15% was set as the null median value and two‐sided alternative was tested. The PE patients showed a median correlation of 0.57 (IQR = 0.305). One‐sample sign test was statistically significant with 96.5 % confidence interval: 0.20–0.63, P < 0.00001. Lung cancer patients had a median correlation of 0.57(IQR = 0.230). Again, a one‐sample sign test for median was statistically significant with 96.5 percent confidence interval: 0.45–0.71, P < 0.00001. Conclusion CT‐Perfusion is the first mechanistic model designed to quantify magnitude blood mass changes on noncontrast dynamic CT as a surrogate for pulmonary perfusion. While the reported correlations with SPECT‐P are promising, further investigation is required to determine the optimal CT acquisition protocol and numerical method implementation for CT‐P imaging." @default.
- W3133428118 created "2021-03-01" @default.
- W3133428118 creator A5009835005 @default.
- W3133428118 creator A5019191423 @default.
- W3133428118 creator A5031345297 @default.
- W3133428118 creator A5032174439 @default.
- W3133428118 creator A5046150842 @default.
- W3133428118 creator A5047100062 @default.
- W3133428118 creator A5055888843 @default.
- W3133428118 creator A5060519785 @default.
- W3133428118 creator A5068264454 @default.
- W3133428118 creator A5068487450 @default.
- W3133428118 creator A5075149548 @default.
- W3133428118 creator A5090993994 @default.
- W3133428118 date "2021-03-11" @default.
- W3133428118 modified "2023-10-18" @default.
- W3133428118 title "Quantifying pulmonary perfusion from noncontrast computed tomography" @default.
- W3133428118 cites W1968560891 @default.
- W3133428118 cites W1973980747 @default.
- W3133428118 cites W1985571646 @default.
- W3133428118 cites W1990835448 @default.
- W3133428118 cites W1991942828 @default.
- W3133428118 cites W1997223758 @default.
- W3133428118 cites W2000579557 @default.
- W3133428118 cites W2006034462 @default.
- W3133428118 cites W2006244857 @default.
- W3133428118 cites W2027804252 @default.
- W3133428118 cites W2035619816 @default.
- W3133428118 cites W2040737904 @default.
- W3133428118 cites W2049647519 @default.
- W3133428118 cites W2059920991 @default.
- W3133428118 cites W2060532370 @default.
- W3133428118 cites W2071731662 @default.
- W3133428118 cites W2087387762 @default.
- W3133428118 cites W2116609147 @default.
- W3133428118 cites W2120143772 @default.
- W3133428118 cites W2167872020 @default.
- W3133428118 cites W2192799736 @default.
- W3133428118 cites W2193846987 @default.
- W3133428118 cites W2400240907 @default.
- W3133428118 cites W2570974415 @default.
- W3133428118 cites W2778232801 @default.
- W3133428118 cites W2801671927 @default.
- W3133428118 cites W2805834680 @default.
- W3133428118 cites W2896543351 @default.
- W3133428118 cites W2906437789 @default.
- W3133428118 cites W2908590345 @default.
- W3133428118 cites W2916637687 @default.
- W3133428118 cites W2917653755 @default.
- W3133428118 cites W2923827700 @default.
- W3133428118 cites W2972328716 @default.
- W3133428118 cites W3090027253 @default.
- W3133428118 cites W3106258756 @default.
- W3133428118 cites W4206038828 @default.
- W3133428118 cites W4361868971 @default.
- W3133428118 doi "https://doi.org/10.1002/mp.14792" @default.
- W3133428118 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8252085" @default.
- W3133428118 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33608933" @default.
- W3133428118 hasPublicationYear "2021" @default.
- W3133428118 type Work @default.
- W3133428118 sameAs 3133428118 @default.
- W3133428118 citedByCount "8" @default.
- W3133428118 countsByYear W31334281182021 @default.
- W3133428118 countsByYear W31334281182022 @default.
- W3133428118 countsByYear W31334281182023 @default.
- W3133428118 crossrefType "journal-article" @default.
- W3133428118 hasAuthorship W3133428118A5009835005 @default.
- W3133428118 hasAuthorship W3133428118A5019191423 @default.
- W3133428118 hasAuthorship W3133428118A5031345297 @default.
- W3133428118 hasAuthorship W3133428118A5032174439 @default.
- W3133428118 hasAuthorship W3133428118A5046150842 @default.
- W3133428118 hasAuthorship W3133428118A5047100062 @default.
- W3133428118 hasAuthorship W3133428118A5055888843 @default.
- W3133428118 hasAuthorship W3133428118A5060519785 @default.
- W3133428118 hasAuthorship W3133428118A5068264454 @default.
- W3133428118 hasAuthorship W3133428118A5068487450 @default.
- W3133428118 hasAuthorship W3133428118A5075149548 @default.
- W3133428118 hasAuthorship W3133428118A5090993994 @default.
- W3133428118 hasBestOaLocation W31334281181 @default.
- W3133428118 hasConcept C115961682 @default.
- W3133428118 hasConcept C126322002 @default.
- W3133428118 hasConcept C126838900 @default.
- W3133428118 hasConcept C135691158 @default.
- W3133428118 hasConcept C146957229 @default.
- W3133428118 hasConcept C154945302 @default.
- W3133428118 hasConcept C163716698 @default.
- W3133428118 hasConcept C166704113 @default.
- W3133428118 hasConcept C27101514 @default.
- W3133428118 hasConcept C2776265017 @default.
- W3133428118 hasConcept C2777714996 @default.
- W3133428118 hasConcept C2780441642 @default.
- W3133428118 hasConcept C2989005 @default.
- W3133428118 hasConcept C31601959 @default.
- W3133428118 hasConcept C41008148 @default.
- W3133428118 hasConcept C54170458 @default.
- W3133428118 hasConcept C71924100 @default.
- W3133428118 hasConceptScore W3133428118C115961682 @default.
- W3133428118 hasConceptScore W3133428118C126322002 @default.