Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133454421> ?p ?o ?g. }
- W3133454421 endingPage "727" @default.
- W3133454421 startingPage "727" @default.
- W3133454421 abstract "Over semi-arid agricultural areas, the surface energy balance and its components are largely dependent on the soil water availability. In such conditions, the land surface temperature (LST) retrieved from the thermal bands has been commonly used to represent the high spatial variability of the surface evaporative fraction and associated fluxes. In contrast, however, the soil moisture (SM) retrieved from microwave data has rarely been used thus far due to the unavailability of high-resolution (field scale) SM products until recent times. Soil evaporation is controlled by the surface SM. Moreover, the surface SM dynamics is temporally related to root zone SM, which provides information about the water status of plants. The aim of this work was to assess the gain in terms of flux estimates when integrating microwave-derived SM data in a thermal-based energy balance model at the field scale. In this study, SM products were derived from three different methodologies: the first approach inverts SM, labeled hereafter as ‘SMO20’, from the backscattering coefficient and the interferometric coherence derived from Sentinel-1 products in the water cloud model (WCM); the second approach inverts SM from Sentinel-1 and Sentinel-2 data based on machine learning algorithms trained on a synthetic dataset simulated by the WCM noted ‘SME16’; and the third approach disaggregates the soil moisture active and passive SM at 100 m resolution using Landsat optical/thermal data ‘SMO19’. These SM products, combined with the Landsat based vegetation index and LST, are integrated simultaneously within an energy balance model (TSEB-SM) to predict the latent (LE) and sensible (H) heat fluxes over two irrigated and rainfed wheat crop sites located in the Haouz Plain in the center of Morocco. H and LE were measured over each site using an eddy covariance system and their values were used to evaluate the potential of TSEB-SM against the classical two source energy balance (TSEB) model solely based on optical/thermal data. Globally, TSEB systematically overestimates LE (mean bias of 100 W/m2) and underestimates H (mean bias of −110 W/m2), while TSEB-SM significantly reduces those biases, regardless of the SM product used as input. This is linked to the parameterization of the Priestley Taylor coefficient, which is set to αPT = 1.26 by default in TSEB and adjusted across the season in TSEB-SM. The best performance of TSEB-SM was obtained over the irrigated field using the three retrieved SM products with a mean R2 of 0.72 and 0.92, and a mean RMSE of 31 and 36 W/m2 for LE and H, respectively. This opens up perspectives for applying the TSEB-SM model over extended irrigated agricultural areas to better predict the crop water needs at the field scale." @default.
- W3133454421 created "2021-03-01" @default.
- W3133454421 creator A5012242287 @default.
- W3133454421 creator A5028809124 @default.
- W3133454421 creator A5053743538 @default.
- W3133454421 creator A5056141608 @default.
- W3133454421 creator A5062815718 @default.
- W3133454421 creator A5064825233 @default.
- W3133454421 creator A5073035703 @default.
- W3133454421 creator A5076656139 @default.
- W3133454421 creator A5091783354 @default.
- W3133454421 date "2021-02-17" @default.
- W3133454421 modified "2023-10-14" @default.
- W3133454421 title "On the Utility of High-Resolution Soil Moisture Data for Better Constraining Thermal-Based Energy Balance over Three Semi-Arid Agricultural Areas" @default.
- W3133454421 cites W1213579217 @default.
- W3133454421 cites W1937299890 @default.
- W3133454421 cites W1972871319 @default.
- W3133454421 cites W1984443733 @default.
- W3133454421 cites W1984670836 @default.
- W3133454421 cites W1994954836 @default.
- W3133454421 cites W1996690926 @default.
- W3133454421 cites W2000363461 @default.
- W3133454421 cites W2001564322 @default.
- W3133454421 cites W2007529179 @default.
- W3133454421 cites W2011010141 @default.
- W3133454421 cites W2012106844 @default.
- W3133454421 cites W2017745225 @default.
- W3133454421 cites W2025688578 @default.
- W3133454421 cites W2028304417 @default.
- W3133454421 cites W2030347698 @default.
- W3133454421 cites W2039348932 @default.
- W3133454421 cites W2063623478 @default.
- W3133454421 cites W2072952647 @default.
- W3133454421 cites W2074082212 @default.
- W3133454421 cites W2079285700 @default.
- W3133454421 cites W2084952127 @default.
- W3133454421 cites W2099890263 @default.
- W3133454421 cites W2100401723 @default.
- W3133454421 cites W2113656029 @default.
- W3133454421 cites W2116770956 @default.
- W3133454421 cites W2121745948 @default.
- W3133454421 cites W2124517315 @default.
- W3133454421 cites W2141219203 @default.
- W3133454421 cites W2143715729 @default.
- W3133454421 cites W2146149230 @default.
- W3133454421 cites W2147611675 @default.
- W3133454421 cites W2166276391 @default.
- W3133454421 cites W2166609657 @default.
- W3133454421 cites W2169517707 @default.
- W3133454421 cites W2172396214 @default.
- W3133454421 cites W2187365236 @default.
- W3133454421 cites W221329264 @default.
- W3133454421 cites W2261272073 @default.
- W3133454421 cites W2282555222 @default.
- W3133454421 cites W2304445877 @default.
- W3133454421 cites W2516659717 @default.
- W3133454421 cites W2555627792 @default.
- W3133454421 cites W2599868771 @default.
- W3133454421 cites W2736290716 @default.
- W3133454421 cites W2753979338 @default.
- W3133454421 cites W2762180336 @default.
- W3133454421 cites W2767588274 @default.
- W3133454421 cites W2770155218 @default.
- W3133454421 cites W2790511636 @default.
- W3133454421 cites W2792192198 @default.
- W3133454421 cites W2799869868 @default.
- W3133454421 cites W2809132863 @default.
- W3133454421 cites W2902175533 @default.
- W3133454421 cites W2906106297 @default.
- W3133454421 cites W2940609395 @default.
- W3133454421 cites W2968813128 @default.
- W3133454421 cites W2977461045 @default.
- W3133454421 cites W2999360100 @default.
- W3133454421 cites W3015719051 @default.
- W3133454421 cites W3081470789 @default.
- W3133454421 cites W3103070463 @default.
- W3133454421 doi "https://doi.org/10.3390/rs13040727" @default.
- W3133454421 hasPublicationYear "2021" @default.
- W3133454421 type Work @default.
- W3133454421 sameAs 3133454421 @default.
- W3133454421 citedByCount "9" @default.
- W3133454421 countsByYear W31334544212021 @default.
- W3133454421 countsByYear W31334544212022 @default.
- W3133454421 countsByYear W31334544212023 @default.
- W3133454421 crossrefType "journal-article" @default.
- W3133454421 hasAuthorship W3133454421A5012242287 @default.
- W3133454421 hasAuthorship W3133454421A5028809124 @default.
- W3133454421 hasAuthorship W3133454421A5053743538 @default.
- W3133454421 hasAuthorship W3133454421A5056141608 @default.
- W3133454421 hasAuthorship W3133454421A5062815718 @default.
- W3133454421 hasAuthorship W3133454421A5064825233 @default.
- W3133454421 hasAuthorship W3133454421A5073035703 @default.
- W3133454421 hasAuthorship W3133454421A5076656139 @default.
- W3133454421 hasAuthorship W3133454421A5091783354 @default.
- W3133454421 hasBestOaLocation W31334544211 @default.
- W3133454421 hasConcept C121332964 @default.
- W3133454421 hasConcept C127313418 @default.
- W3133454421 hasConcept C142724271 @default.