Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133476229> ?p ?o ?g. }
- W3133476229 endingPage "1088" @default.
- W3133476229 startingPage "1069" @default.
- W3133476229 abstract "Fast and reliable prediction of riverine flow velocities plays an important role in many applications, including flood risk management. The shallow water equations (SWEs) are commonly used for prediction of the riverine flow velocities. However, accurate and fast prediction with standard SWE solvers remains challenging in many cases. Traditional approaches are computationally expensive and require high-resolution measurement of riverbed profile (i.e., bathymetry) for accurate predictions. As a result, they are a poor fit in situations where they need to be evaluated repetitively due, for example, to varying boundary condition (BC) scenarios, or when the bathymetry is not known with certainty. In this work, we propose a two-stage process that tackles these issues. First, using the principal component geostatistical approach we estimate the probability density function of the bathymetry from flow velocity measurements, and then we use multiple machine learning algorithms in order to obtain a fast solver of the SWEs, given augmented realizations from the posterior bathymetry distribution and the prescribed range of potential BCs. The first step of the proposed approach allows us to predict flow velocities without any direct measurement of the bathymetry. Furthermore, the augmentation of the distribution in the second stage allows incorporation of the additional bathymetry information into the flow velocity prediction for improved accuracy and generalization, even if the bathymetry changes over time. Here, we use three different forward solvers, referred to as principal component analysis-deep neural network, supervised encoder, and supervised variational encoder, and validate them on a reach of the Savannah river near Augusta, GA. Our results show that the fast solvers are capable of predicting flow velocities with variable bathymetry and BCs with good accuracy, at a computational cost that is significantly lower than the cost of solving the full boundary value problem with traditional methods." @default.
- W3133476229 created "2021-03-01" @default.
- W3133476229 creator A5001770882 @default.
- W3133476229 creator A5005471427 @default.
- W3133476229 creator A5013566384 @default.
- W3133476229 creator A5025591123 @default.
- W3133476229 creator A5029276162 @default.
- W3133476229 creator A5061822097 @default.
- W3133476229 creator A5077217744 @default.
- W3133476229 date "2021-02-23" @default.
- W3133476229 modified "2023-10-14" @default.
- W3133476229 title "Application of deep learning to large scale riverine flow velocity estimation" @default.
- W3133476229 cites W1504073505 @default.
- W3133476229 cites W1511929262 @default.
- W3133476229 cites W1763926976 @default.
- W3133476229 cites W1897434927 @default.
- W3133476229 cites W1970039558 @default.
- W3133476229 cites W1975373443 @default.
- W3133476229 cites W1979783636 @default.
- W3133476229 cites W1981549240 @default.
- W3133476229 cites W1993754709 @default.
- W3133476229 cites W1994245845 @default.
- W3133476229 cites W1996337842 @default.
- W3133476229 cites W1999571604 @default.
- W3133476229 cites W2008895457 @default.
- W3133476229 cites W2019251956 @default.
- W3133476229 cites W2022553873 @default.
- W3133476229 cites W2037245714 @default.
- W3133476229 cites W2049937937 @default.
- W3133476229 cites W2063136926 @default.
- W3133476229 cites W2064210295 @default.
- W3133476229 cites W2065149043 @default.
- W3133476229 cites W2072771198 @default.
- W3133476229 cites W2074165630 @default.
- W3133476229 cites W2081104230 @default.
- W3133476229 cites W2082655554 @default.
- W3133476229 cites W2100495367 @default.
- W3133476229 cites W2108672393 @default.
- W3133476229 cites W2112823474 @default.
- W3133476229 cites W2122538988 @default.
- W3133476229 cites W2129007796 @default.
- W3133476229 cites W2129041623 @default.
- W3133476229 cites W2132989754 @default.
- W3133476229 cites W2139047213 @default.
- W3133476229 cites W2152896489 @default.
- W3133476229 cites W2225762164 @default.
- W3133476229 cites W2550848904 @default.
- W3133476229 cites W2604643948 @default.
- W3133476229 cites W2606983391 @default.
- W3133476229 cites W2766298346 @default.
- W3133476229 cites W2783958285 @default.
- W3133476229 cites W2792029723 @default.
- W3133476229 cites W2800819102 @default.
- W3133476229 cites W2805221296 @default.
- W3133476229 cites W2806339229 @default.
- W3133476229 cites W2899161953 @default.
- W3133476229 cites W2919694267 @default.
- W3133476229 cites W2944905287 @default.
- W3133476229 cites W2948978827 @default.
- W3133476229 cites W2949337302 @default.
- W3133476229 cites W2966709954 @default.
- W3133476229 cites W2971853696 @default.
- W3133476229 cites W2976326490 @default.
- W3133476229 cites W2987143122 @default.
- W3133476229 cites W3040221740 @default.
- W3133476229 cites W3044348348 @default.
- W3133476229 cites W3045472538 @default.
- W3133476229 cites W3046402802 @default.
- W3133476229 cites W3094306397 @default.
- W3133476229 cites W4236543711 @default.
- W3133476229 doi "https://doi.org/10.1007/s00477-021-01988-0" @default.
- W3133476229 hasPublicationYear "2021" @default.
- W3133476229 type Work @default.
- W3133476229 sameAs 3133476229 @default.
- W3133476229 citedByCount "15" @default.
- W3133476229 countsByYear W31334762292021 @default.
- W3133476229 countsByYear W31334762292022 @default.
- W3133476229 countsByYear W31334762292023 @default.
- W3133476229 crossrefType "journal-article" @default.
- W3133476229 hasAuthorship W3133476229A5001770882 @default.
- W3133476229 hasAuthorship W3133476229A5005471427 @default.
- W3133476229 hasAuthorship W3133476229A5013566384 @default.
- W3133476229 hasAuthorship W3133476229A5025591123 @default.
- W3133476229 hasAuthorship W3133476229A5029276162 @default.
- W3133476229 hasAuthorship W3133476229A5061822097 @default.
- W3133476229 hasAuthorship W3133476229A5077217744 @default.
- W3133476229 hasBestOaLocation W31334762292 @default.
- W3133476229 hasConcept C101738243 @default.
- W3133476229 hasConcept C111368507 @default.
- W3133476229 hasConcept C11413529 @default.
- W3133476229 hasConcept C127313418 @default.
- W3133476229 hasConcept C127413603 @default.
- W3133476229 hasConcept C146978453 @default.
- W3133476229 hasConcept C154945302 @default.
- W3133476229 hasConcept C174943157 @default.
- W3133476229 hasConcept C204323151 @default.
- W3133476229 hasConcept C2524010 @default.
- W3133476229 hasConcept C27438332 @default.