Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133490532> ?p ?o ?g. }
- W3133490532 endingPage "8616" @default.
- W3133490532 startingPage "8603" @default.
- W3133490532 abstract "Resource constraint job scheduling is an important combinatorial optimization problem with many practical applications. This problem aims at determining a schedule for executing jobs on machines satisfying several constraints (e.g., precedence and resource constraints) given a shared central resource while minimizing the tardiness of the jobs. Due to the complexity of the problem, several exact, heuristic, and hybrid methods have been attempted. Despite their success, scalability is still a major issue of the existing methods. In this study, we develop a new genetic programming algorithm for resource constraint job scheduling to overcome or alleviate the scalability issue. The goal of the proposed algorithm is to evolve effective and efficient multipass heuristics by a surrogate-assisted learning mechanism and self-competitive genetic operations. The experiments show that the evolved multipass heuristics are very effective when tested with a large dataset. Moreover, the algorithm scales very well as excellent solutions are found for even the largest problem instances, outperforming existing metaheuristic and hybrid methods." @default.
- W3133490532 created "2021-03-15" @default.
- W3133490532 creator A5008490552 @default.
- W3133490532 creator A5009255854 @default.
- W3133490532 creator A5016371456 @default.
- W3133490532 creator A5046309576 @default.
- W3133490532 date "2022-09-01" @default.
- W3133490532 modified "2023-09-24" @default.
- W3133490532 title "Automated Design of Multipass Heuristics for Resource-Constrained Job Scheduling With Self-Competitive Genetic Programming" @default.
- W3133490532 cites W1540789301 @default.
- W3133490532 cites W1580020823 @default.
- W3133490532 cites W1966097591 @default.
- W3133490532 cites W1967175152 @default.
- W3133490532 cites W1974479993 @default.
- W3133490532 cites W1981029154 @default.
- W3133490532 cites W2011119767 @default.
- W3133490532 cites W2023002456 @default.
- W3133490532 cites W2038345112 @default.
- W3133490532 cites W2042986967 @default.
- W3133490532 cites W2043258790 @default.
- W3133490532 cites W2058919894 @default.
- W3133490532 cites W2065212569 @default.
- W3133490532 cites W2067363195 @default.
- W3133490532 cites W2087219162 @default.
- W3133490532 cites W2087376002 @default.
- W3133490532 cites W2089688797 @default.
- W3133490532 cites W2090069860 @default.
- W3133490532 cites W2120250216 @default.
- W3133490532 cites W2131422526 @default.
- W3133490532 cites W2145088741 @default.
- W3133490532 cites W2163206542 @default.
- W3133490532 cites W2164271762 @default.
- W3133490532 cites W2231411611 @default.
- W3133490532 cites W2232827560 @default.
- W3133490532 cites W2275596639 @default.
- W3133490532 cites W2344265714 @default.
- W3133490532 cites W2398671303 @default.
- W3133490532 cites W2590959390 @default.
- W3133490532 cites W2599996254 @default.
- W3133490532 cites W2760142002 @default.
- W3133490532 cites W2768102642 @default.
- W3133490532 cites W2773606106 @default.
- W3133490532 cites W2884724305 @default.
- W3133490532 cites W2904611540 @default.
- W3133490532 cites W2945774998 @default.
- W3133490532 cites W2972268050 @default.
- W3133490532 cites W2990229168 @default.
- W3133490532 cites W3092440396 @default.
- W3133490532 cites W2156843411 @default.
- W3133490532 doi "https://doi.org/10.1109/tcyb.2021.3062799" @default.
- W3133490532 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33710971" @default.
- W3133490532 hasPublicationYear "2022" @default.
- W3133490532 type Work @default.
- W3133490532 sameAs 3133490532 @default.
- W3133490532 citedByCount "2" @default.
- W3133490532 countsByYear W31334905322022 @default.
- W3133490532 countsByYear W31334905322023 @default.
- W3133490532 crossrefType "journal-article" @default.
- W3133490532 hasAuthorship W3133490532A5008490552 @default.
- W3133490532 hasAuthorship W3133490532A5009255854 @default.
- W3133490532 hasAuthorship W3133490532A5016371456 @default.
- W3133490532 hasAuthorship W3133490532A5046309576 @default.
- W3133490532 hasConcept C109718341 @default.
- W3133490532 hasConcept C111919701 @default.
- W3133490532 hasConcept C119857082 @default.
- W3133490532 hasConcept C120314980 @default.
- W3133490532 hasConcept C126255220 @default.
- W3133490532 hasConcept C127705205 @default.
- W3133490532 hasConcept C137631369 @default.
- W3133490532 hasConcept C154945302 @default.
- W3133490532 hasConcept C173404611 @default.
- W3133490532 hasConcept C206729178 @default.
- W3133490532 hasConcept C2778047078 @default.
- W3133490532 hasConcept C33923547 @default.
- W3133490532 hasConcept C41008148 @default.
- W3133490532 hasConcept C48044578 @default.
- W3133490532 hasConcept C55416958 @default.
- W3133490532 hasConcept C68387754 @default.
- W3133490532 hasConcept C77088390 @default.
- W3133490532 hasConcept C8880873 @default.
- W3133490532 hasConceptScore W3133490532C109718341 @default.
- W3133490532 hasConceptScore W3133490532C111919701 @default.
- W3133490532 hasConceptScore W3133490532C119857082 @default.
- W3133490532 hasConceptScore W3133490532C120314980 @default.
- W3133490532 hasConceptScore W3133490532C126255220 @default.
- W3133490532 hasConceptScore W3133490532C127705205 @default.
- W3133490532 hasConceptScore W3133490532C137631369 @default.
- W3133490532 hasConceptScore W3133490532C154945302 @default.
- W3133490532 hasConceptScore W3133490532C173404611 @default.
- W3133490532 hasConceptScore W3133490532C206729178 @default.
- W3133490532 hasConceptScore W3133490532C2778047078 @default.
- W3133490532 hasConceptScore W3133490532C33923547 @default.
- W3133490532 hasConceptScore W3133490532C41008148 @default.
- W3133490532 hasConceptScore W3133490532C48044578 @default.
- W3133490532 hasConceptScore W3133490532C55416958 @default.
- W3133490532 hasConceptScore W3133490532C68387754 @default.
- W3133490532 hasConceptScore W3133490532C77088390 @default.
- W3133490532 hasConceptScore W3133490532C8880873 @default.