Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133514897> ?p ?o ?g. }
- W3133514897 endingPage "2894" @default.
- W3133514897 startingPage "2865" @default.
- W3133514897 abstract "Anomaly detection in energy consumption is a crucial step towards developing efficient energy saving systems, diminishing overall energy expenditure and reducing carbon emissions. Therefore, implementing powerful techniques to identify anomalous consumption in buildings and providing this information to end-users and managers is of significant importance. Accordingly, two novel schemes are proposed in this paper; the first one is an unsupervised abnormality detection based on one-class support vector machine, namely UAD-OCSVM, in which abnormalities are extracted without the need of annotated data; the second is a supervised abnormality detection based on micromoments (SAD-M2), which is implemented in the following steps: (i) normal and abnormal power consumptions are defined and assigned; (ii) a rule-based algorithm is introduced to extract the micromoments representing the intent-rich moments, in which the end-users make decisions to consume energy; and (iii) an improved K-nearest neighbors model is introduced to automatically classify consumption footprints as normal or abnormal. Empirical evaluation conducted in this framework under three different data sets demonstrates that SAD-M2 achieves both a highest abnormality detection performance and real-time processing capability with considerably lower computational cost in comparison with other machine learning methods. For instance, up to 99.71% accuracy and 99.77% F1 score have been achieved using a real-world data set collected at the Qatar University energy lab." @default.
- W3133514897 created "2021-03-15" @default.
- W3133514897 creator A5019551063 @default.
- W3133514897 creator A5037331113 @default.
- W3133514897 creator A5041045029 @default.
- W3133514897 creator A5042805664 @default.
- W3133514897 date "2021-03-08" @default.
- W3133514897 modified "2023-10-16" @default.
- W3133514897 title "Smart power consumption abnormality detection in buildings using micromoments and improved K‐nearest neighbors" @default.
- W3133514897 cites W2072268921 @default.
- W3133514897 cites W2087347434 @default.
- W3133514897 cites W2091838590 @default.
- W3133514897 cites W2093995060 @default.
- W3133514897 cites W2112618476 @default.
- W3133514897 cites W2122646361 @default.
- W3133514897 cites W2293360607 @default.
- W3133514897 cites W2296337638 @default.
- W3133514897 cites W2296441075 @default.
- W3133514897 cites W2320807806 @default.
- W3133514897 cites W2418522081 @default.
- W3133514897 cites W2528617547 @default.
- W3133514897 cites W2550328773 @default.
- W3133514897 cites W2564673630 @default.
- W3133514897 cites W2582849983 @default.
- W3133514897 cites W2586861772 @default.
- W3133514897 cites W2588947884 @default.
- W3133514897 cites W2594434602 @default.
- W3133514897 cites W2600845876 @default.
- W3133514897 cites W2609582545 @default.
- W3133514897 cites W2734559576 @default.
- W3133514897 cites W2780476542 @default.
- W3133514897 cites W2796772955 @default.
- W3133514897 cites W2887312558 @default.
- W3133514897 cites W2897572014 @default.
- W3133514897 cites W2900855922 @default.
- W3133514897 cites W2909455612 @default.
- W3133514897 cites W2912123998 @default.
- W3133514897 cites W2915094565 @default.
- W3133514897 cites W2915607909 @default.
- W3133514897 cites W2922086944 @default.
- W3133514897 cites W2936872703 @default.
- W3133514897 cites W2945594226 @default.
- W3133514897 cites W2946565447 @default.
- W3133514897 cites W2952926846 @default.
- W3133514897 cites W2954240174 @default.
- W3133514897 cites W2961475402 @default.
- W3133514897 cites W2971332248 @default.
- W3133514897 cites W2979628176 @default.
- W3133514897 cites W2989823323 @default.
- W3133514897 cites W2999931171 @default.
- W3133514897 cites W3001100660 @default.
- W3133514897 cites W3007395614 @default.
- W3133514897 cites W3017765730 @default.
- W3133514897 cites W3024425417 @default.
- W3133514897 cites W3024808067 @default.
- W3133514897 cites W3031194307 @default.
- W3133514897 cites W3032131436 @default.
- W3133514897 cites W3034307843 @default.
- W3133514897 cites W3035678942 @default.
- W3133514897 cites W3041500013 @default.
- W3133514897 cites W3090038799 @default.
- W3133514897 cites W3094633002 @default.
- W3133514897 cites W3097240822 @default.
- W3133514897 cites W3107249503 @default.
- W3133514897 cites W3114376264 @default.
- W3133514897 cites W3115257368 @default.
- W3133514897 cites W3119134918 @default.
- W3133514897 cites W3133901892 @default.
- W3133514897 doi "https://doi.org/10.1002/int.22404" @default.
- W3133514897 hasPublicationYear "2021" @default.
- W3133514897 type Work @default.
- W3133514897 sameAs 3133514897 @default.
- W3133514897 citedByCount "43" @default.
- W3133514897 countsByYear W31335148972021 @default.
- W3133514897 countsByYear W31335148972022 @default.
- W3133514897 countsByYear W31335148972023 @default.
- W3133514897 crossrefType "journal-article" @default.
- W3133514897 hasAuthorship W3133514897A5019551063 @default.
- W3133514897 hasAuthorship W3133514897A5037331113 @default.
- W3133514897 hasAuthorship W3133514897A5041045029 @default.
- W3133514897 hasAuthorship W3133514897A5042805664 @default.
- W3133514897 hasBestOaLocation W31335148971 @default.
- W3133514897 hasConcept C105795698 @default.
- W3133514897 hasConcept C113238511 @default.
- W3133514897 hasConcept C119599485 @default.
- W3133514897 hasConcept C119857082 @default.
- W3133514897 hasConcept C121332964 @default.
- W3133514897 hasConcept C12267149 @default.
- W3133514897 hasConcept C124101348 @default.
- W3133514897 hasConcept C127413603 @default.
- W3133514897 hasConcept C153180895 @default.
- W3133514897 hasConcept C154945302 @default.
- W3133514897 hasConcept C15744967 @default.
- W3133514897 hasConcept C163258240 @default.
- W3133514897 hasConcept C177264268 @default.
- W3133514897 hasConcept C186370098 @default.
- W3133514897 hasConcept C199360897 @default.
- W3133514897 hasConcept C2780165032 @default.