Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133533076> ?p ?o ?g. }
- W3133533076 endingPage "103625" @default.
- W3133533076 startingPage "103625" @default.
- W3133533076 abstract "The present study completes the development of a model for predicting the effect of wall impacts on agglomerates in turbulent flows. Relying on an Euler-Lagrange hard-sphere approach this physical phenomenon is described in an efficient manner allowing practically relevant multiphase flow simulations at high mass loadings. In a recent study (Khalifa and Breuer, 2020) conditions for the onset of breakage and the resulting fragment size distribution were derived. In the present investigation a data-driven description of the post-breakage kinetics of the fragments is developed based on extensive DEM simulations taking a variety of impact conditions (impact velocity, impact angle, agglomerate size) into account. The description relates the velocity vectors of the fragments after breakage to three parameters: The reflection angle, the spreading angle and a velocity ratio of the magnitude of the fragment velocity to the impact velocity of the agglomerate. Relying on the DEM results Weibull distribution functions are used to describe the parameters of the wall-impact model. The shape and scale parameters of the Weibull distributions are found to mainly depend on the impact angle of the agglomerate. Consequently, relationships between the shape and the scale parameters and the impact angle are established for each of the three parameters based on a fourth-order regression. This allows to determine the velocity vectors of the fragments randomly based on the corresponding Weibull distributions of the reflection angle, the spreading angle and the fragment velocity ratio. The devised model is evaluated in a turbulent duct flow at five Reynolds numbers and three agglomerate strengths given by powders consisting of primary particles of different size. The analysis first concentrates on the pure wall-impact breakage but then also includes agglomerate breakup due to turbulence, drag forces and rotation allowing to determine the shares of the different physical phenomena. It is found that with increasing Stokes number the wall-impact breakage occurs less effectively due to the reduced responsiveness of the agglomerates to the secondary flow motions in the duct. However, in the very high range of St+ other mechanisms such as the turbophoresis and the lift force augment the breakage at walls. Comparing the contributions of the different breakage mechanism reveals that the wall impact is dominant at the lowest Reynolds numbers, whereas the drag stress prevails at high Re." @default.
- W3133533076 created "2021-03-15" @default.
- W3133533076 creator A5054388814 @default.
- W3133533076 creator A5071329571 @default.
- W3133533076 date "2021-09-01" @default.
- W3133533076 modified "2023-09-27" @default.
- W3133533076 title "An efficient model for the breakage of agglomerates by wall impact applied to Euler-Lagrange LES predictions" @default.
- W3133533076 cites W1958729197 @default.
- W3133533076 cites W1964241969 @default.
- W3133533076 cites W1969510436 @default.
- W3133533076 cites W1971455242 @default.
- W3133533076 cites W1974363754 @default.
- W3133533076 cites W1977035996 @default.
- W3133533076 cites W1979667129 @default.
- W3133533076 cites W1984628949 @default.
- W3133533076 cites W1987810127 @default.
- W3133533076 cites W1988304619 @default.
- W3133533076 cites W1989980510 @default.
- W3133533076 cites W1991688836 @default.
- W3133533076 cites W1994777984 @default.
- W3133533076 cites W2000804914 @default.
- W3133533076 cites W2004357282 @default.
- W3133533076 cites W2006733145 @default.
- W3133533076 cites W2011454852 @default.
- W3133533076 cites W2014045156 @default.
- W3133533076 cites W2015276999 @default.
- W3133533076 cites W2015413077 @default.
- W3133533076 cites W2021002169 @default.
- W3133533076 cites W2026785392 @default.
- W3133533076 cites W2035545087 @default.
- W3133533076 cites W2040522007 @default.
- W3133533076 cites W2044665398 @default.
- W3133533076 cites W2052181874 @default.
- W3133533076 cites W2060879295 @default.
- W3133533076 cites W2061985034 @default.
- W3133533076 cites W2062712788 @default.
- W3133533076 cites W2069142256 @default.
- W3133533076 cites W2073775990 @default.
- W3133533076 cites W2074447412 @default.
- W3133533076 cites W2078612418 @default.
- W3133533076 cites W2080131977 @default.
- W3133533076 cites W2106349764 @default.
- W3133533076 cites W2108179315 @default.
- W3133533076 cites W2115021552 @default.
- W3133533076 cites W2130424894 @default.
- W3133533076 cites W2153008476 @default.
- W3133533076 cites W2156242059 @default.
- W3133533076 cites W2159529419 @default.
- W3133533076 cites W2214698182 @default.
- W3133533076 cites W2234265864 @default.
- W3133533076 cites W2261128467 @default.
- W3133533076 cites W2281951632 @default.
- W3133533076 cites W2438302150 @default.
- W3133533076 cites W2474557870 @default.
- W3133533076 cites W2504044668 @default.
- W3133533076 cites W2520894338 @default.
- W3133533076 cites W2536427608 @default.
- W3133533076 cites W2621999564 @default.
- W3133533076 cites W2898486936 @default.
- W3133533076 cites W2918335093 @default.
- W3133533076 cites W2922526155 @default.
- W3133533076 cites W2948331274 @default.
- W3133533076 cites W2976810099 @default.
- W3133533076 cites W3023917747 @default.
- W3133533076 cites W3041967855 @default.
- W3133533076 cites W3043764218 @default.
- W3133533076 cites W3045759545 @default.
- W3133533076 cites W3098704406 @default.
- W3133533076 cites W3103368639 @default.
- W3133533076 cites W4211230281 @default.
- W3133533076 cites W4231170168 @default.
- W3133533076 cites W4240023291 @default.
- W3133533076 cites W4241433147 @default.
- W3133533076 cites W4250162880 @default.
- W3133533076 cites W4361852062 @default.
- W3133533076 cites W808864380 @default.
- W3133533076 doi "https://doi.org/10.1016/j.ijmultiphaseflow.2021.103625" @default.
- W3133533076 hasPublicationYear "2021" @default.
- W3133533076 type Work @default.
- W3133533076 sameAs 3133533076 @default.
- W3133533076 citedByCount "6" @default.
- W3133533076 countsByYear W31335330762021 @default.
- W3133533076 countsByYear W31335330762022 @default.
- W3133533076 countsByYear W31335330762023 @default.
- W3133533076 crossrefType "journal-article" @default.
- W3133533076 hasAuthorship W3133533076A5054388814 @default.
- W3133533076 hasAuthorship W3133533076A5071329571 @default.
- W3133533076 hasBestOaLocation W31335330761 @default.
- W3133533076 hasConcept C105795698 @default.
- W3133533076 hasConcept C121332964 @default.
- W3133533076 hasConcept C129955480 @default.
- W3133533076 hasConcept C149792144 @default.
- W3133533076 hasConcept C159985019 @default.
- W3133533076 hasConcept C173291955 @default.
- W3133533076 hasConcept C182748727 @default.
- W3133533076 hasConcept C192562407 @default.
- W3133533076 hasConcept C196558001 @default.
- W3133533076 hasConcept C2779015675 @default.