Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133561284> ?p ?o ?g. }
- W3133561284 endingPage "130162" @default.
- W3133561284 startingPage "130162" @default.
- W3133561284 abstract "Copper (Cu) ion in wastewater is considered as one of the crucial hazardous elements to be quantified. This research is established to predict copper ions adsorption (Ad) by Attapulgite clay from aqueous solutions using computer-aided models. Three artificial intelligent (AI) models are developed for this purpose including Grid optimization-based random forest (Grid-RF), artificial neural network (ANN) and support vector machine (SVM). Principal component analysis (PCA) is used to select model inputs from different variables including the initial concentration of Cu (IC), the dosage of Attapulgite clay (Dose), contact time (CT), pH, and addition of NaNO3 (SN). The ANN model is found to predict Ad with minimum root mean square error (RMSE = 0.9283) and maximum coefficient of determination (R2 = 0.9974) when all the variables (i.e., IC, Dose, CT, pH, SN) were considered as input. The prediction accuracy of Grid-RF model is found similar to ANN model when a few numbers of predictors are used. According to prediction accuracy, the models can be arranged as ANN-M5> Grid-RF-M5> Grid-RF-M4> ANN-M4> SVM-M4> SVM-M5. Overall, the applied statistical analysis of the results indicates that ANN and Grid-RF models can be employed as a computer-aided model for monitoring and simulating the adsorption from aqueous solutions by Attapulgite clay." @default.
- W3133561284 created "2021-03-15" @default.
- W3133561284 creator A5014521109 @default.
- W3133561284 creator A5016408387 @default.
- W3133561284 creator A5024646307 @default.
- W3133561284 creator A5037497633 @default.
- W3133561284 creator A5037953109 @default.
- W3133561284 creator A5057749312 @default.
- W3133561284 creator A5073103893 @default.
- W3133561284 date "2021-08-01" @default.
- W3133561284 modified "2023-10-17" @default.
- W3133561284 title "Prediction of copper ions adsorption by attapulgite adsorbent using tuned-artificial intelligence model" @default.
- W3133561284 cites W1791360588 @default.
- W3133561284 cites W1967844590 @default.
- W3133561284 cites W1995341919 @default.
- W3133561284 cites W2000437641 @default.
- W3133561284 cites W2000603059 @default.
- W3133561284 cites W2008459329 @default.
- W3133561284 cites W2014919451 @default.
- W3133561284 cites W2018509403 @default.
- W3133561284 cites W2030191454 @default.
- W3133561284 cites W2030193991 @default.
- W3133561284 cites W2039240409 @default.
- W3133561284 cites W2043451777 @default.
- W3133561284 cites W2050717874 @default.
- W3133561284 cites W2055159219 @default.
- W3133561284 cites W2060299981 @default.
- W3133561284 cites W2073797042 @default.
- W3133561284 cites W2077238186 @default.
- W3133561284 cites W2089468765 @default.
- W3133561284 cites W2103525046 @default.
- W3133561284 cites W2123561681 @default.
- W3133561284 cites W2128728535 @default.
- W3133561284 cites W2138763184 @default.
- W3133561284 cites W2161694749 @default.
- W3133561284 cites W2520676852 @default.
- W3133561284 cites W2568727652 @default.
- W3133561284 cites W2575970741 @default.
- W3133561284 cites W2583366393 @default.
- W3133561284 cites W2602628951 @default.
- W3133561284 cites W2803075541 @default.
- W3133561284 cites W2805995599 @default.
- W3133561284 cites W2811350827 @default.
- W3133561284 cites W2884075193 @default.
- W3133561284 cites W2886137307 @default.
- W3133561284 cites W2897915978 @default.
- W3133561284 cites W2901156759 @default.
- W3133561284 cites W2911964244 @default.
- W3133561284 cites W2938010697 @default.
- W3133561284 cites W2952634700 @default.
- W3133561284 cites W2952890616 @default.
- W3133561284 cites W2967272944 @default.
- W3133561284 cites W2990513038 @default.
- W3133561284 cites W2991097100 @default.
- W3133561284 cites W2995260071 @default.
- W3133561284 cites W2996420907 @default.
- W3133561284 cites W2999289769 @default.
- W3133561284 cites W3004004790 @default.
- W3133561284 cites W3031483110 @default.
- W3133561284 cites W3034918457 @default.
- W3133561284 cites W3037312783 @default.
- W3133561284 cites W3048871475 @default.
- W3133561284 cites W3122598275 @default.
- W3133561284 cites W3128836098 @default.
- W3133561284 cites W4239510810 @default.
- W3133561284 cites W4244777963 @default.
- W3133561284 cites W6540948 @default.
- W3133561284 doi "https://doi.org/10.1016/j.chemosphere.2021.130162" @default.
- W3133561284 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34088083" @default.
- W3133561284 hasPublicationYear "2021" @default.
- W3133561284 type Work @default.
- W3133561284 sameAs 3133561284 @default.
- W3133561284 citedByCount "34" @default.
- W3133561284 countsByYear W31335612842021 @default.
- W3133561284 countsByYear W31335612842022 @default.
- W3133561284 countsByYear W31335612842023 @default.
- W3133561284 crossrefType "journal-article" @default.
- W3133561284 hasAuthorship W3133561284A5014521109 @default.
- W3133561284 hasAuthorship W3133561284A5016408387 @default.
- W3133561284 hasAuthorship W3133561284A5024646307 @default.
- W3133561284 hasAuthorship W3133561284A5037497633 @default.
- W3133561284 hasAuthorship W3133561284A5037953109 @default.
- W3133561284 hasAuthorship W3133561284A5057749312 @default.
- W3133561284 hasAuthorship W3133561284A5073103893 @default.
- W3133561284 hasConcept C105795698 @default.
- W3133561284 hasConcept C119857082 @default.
- W3133561284 hasConcept C12267149 @default.
- W3133561284 hasConcept C128990827 @default.
- W3133561284 hasConcept C139945424 @default.
- W3133561284 hasConcept C147789679 @default.
- W3133561284 hasConcept C150394285 @default.
- W3133561284 hasConcept C154945302 @default.
- W3133561284 hasConcept C184651966 @default.
- W3133561284 hasConcept C185592680 @default.
- W3133561284 hasConcept C186060115 @default.
- W3133561284 hasConcept C187691185 @default.
- W3133561284 hasConcept C191897082 @default.
- W3133561284 hasConcept C192562407 @default.