Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133568295> ?p ?o ?g. }
- W3133568295 endingPage "4086" @default.
- W3133568295 startingPage "4064" @default.
- W3133568295 abstract "Satellite remote sensing has been widely used to map suspended sediment concentration (SSC) in waterbodies. However, due to the complexity of sediment-water interactions, it has been difficult to derive linear and non-linear regression equations to reliably predict SSC, especially when trying to estimate depth of integrated sediment. This study uses Landsat 8 OLI (Operational Land Imager) sensor to map SSC within the Maumee River in Ohio, USA, at multiple depth intervals (15, 61, 91, and 182 cm). Simple linear least squares regression (LLSR), and three common machine learning models: random forest (RF), support vector regression (SVR), and model averaged neural network (MANN) were used to estimate SSC at the depth intervals. All machine learning models significantly outperformed LLSR while RF performed the best. In both RF and MANN, R2 (coefficient of determination) increases with depth with a maximum R2 of 0.89 and 0.83, respectively, at a depth of 0–182 cm. The results show that machine learning models can implement nonlinear relationships that produce better predictions than traditional linear regression methods in estimating depth integrated SSC, especially when samples are limited." @default.
- W3133568295 created "2021-03-15" @default.
- W3133568295 creator A5020135454 @default.
- W3133568295 creator A5033755363 @default.
- W3133568295 creator A5036863336 @default.
- W3133568295 creator A5075290078 @default.
- W3133568295 date "2021-03-09" @default.
- W3133568295 modified "2023-10-11" @default.
- W3133568295 title "Landsat 8 monitoring of multi-depth suspended sediment concentrations in Lake Erie’s Maumee River using machine learning" @default.
- W3133568295 cites W1646591491 @default.
- W3133568295 cites W174566429 @default.
- W3133568295 cites W1967649397 @default.
- W3133568295 cites W1968593300 @default.
- W3133568295 cites W1972581636 @default.
- W3133568295 cites W1972670970 @default.
- W3133568295 cites W1983774837 @default.
- W3133568295 cites W1983945817 @default.
- W3133568295 cites W1985630277 @default.
- W3133568295 cites W1990735852 @default.
- W3133568295 cites W1993178254 @default.
- W3133568295 cites W2004553299 @default.
- W3133568295 cites W2007669929 @default.
- W3133568295 cites W2020100026 @default.
- W3133568295 cites W2031061930 @default.
- W3133568295 cites W2035781416 @default.
- W3133568295 cites W2040562265 @default.
- W3133568295 cites W2048956808 @default.
- W3133568295 cites W2061830556 @default.
- W3133568295 cites W2067136514 @default.
- W3133568295 cites W2076196252 @default.
- W3133568295 cites W2082081125 @default.
- W3133568295 cites W2088704524 @default.
- W3133568295 cites W2091849042 @default.
- W3133568295 cites W2094064597 @default.
- W3133568295 cites W2100711113 @default.
- W3133568295 cites W2104609361 @default.
- W3133568295 cites W2121885753 @default.
- W3133568295 cites W2123705813 @default.
- W3133568295 cites W2124119921 @default.
- W3133568295 cites W2126567721 @default.
- W3133568295 cites W2148464368 @default.
- W3133568295 cites W2161265506 @default.
- W3133568295 cites W2177374022 @default.
- W3133568295 cites W2218047931 @default.
- W3133568295 cites W2273147317 @default.
- W3133568295 cites W2314345143 @default.
- W3133568295 cites W2336571173 @default.
- W3133568295 cites W2343501884 @default.
- W3133568295 cites W2484438489 @default.
- W3133568295 cites W2487770199 @default.
- W3133568295 cites W2538628769 @default.
- W3133568295 cites W2553083640 @default.
- W3133568295 cites W2572463531 @default.
- W3133568295 cites W2587457795 @default.
- W3133568295 cites W2605427351 @default.
- W3133568295 cites W2606748724 @default.
- W3133568295 cites W2619820913 @default.
- W3133568295 cites W2768732505 @default.
- W3133568295 cites W2776146695 @default.
- W3133568295 cites W2778757033 @default.
- W3133568295 cites W2780316609 @default.
- W3133568295 cites W2790559779 @default.
- W3133568295 cites W2792247930 @default.
- W3133568295 cites W2800655747 @default.
- W3133568295 cites W2891166038 @default.
- W3133568295 cites W2899748205 @default.
- W3133568295 cites W2901017212 @default.
- W3133568295 cites W2911061076 @default.
- W3133568295 cites W2921087400 @default.
- W3133568295 cites W2923401899 @default.
- W3133568295 cites W4250352131 @default.
- W3133568295 doi "https://doi.org/10.1080/01431161.2021.1890268" @default.
- W3133568295 hasPublicationYear "2021" @default.
- W3133568295 type Work @default.
- W3133568295 sameAs 3133568295 @default.
- W3133568295 citedByCount "9" @default.
- W3133568295 countsByYear W31335682952021 @default.
- W3133568295 countsByYear W31335682952022 @default.
- W3133568295 countsByYear W31335682952023 @default.
- W3133568295 crossrefType "journal-article" @default.
- W3133568295 hasAuthorship W3133568295A5020135454 @default.
- W3133568295 hasAuthorship W3133568295A5033755363 @default.
- W3133568295 hasAuthorship W3133568295A5036863336 @default.
- W3133568295 hasAuthorship W3133568295A5075290078 @default.
- W3133568295 hasConcept C105795698 @default.
- W3133568295 hasConcept C114793014 @default.
- W3133568295 hasConcept C119857082 @default.
- W3133568295 hasConcept C12267149 @default.
- W3133568295 hasConcept C127313418 @default.
- W3133568295 hasConcept C127413603 @default.
- W3133568295 hasConcept C146978453 @default.
- W3133568295 hasConcept C152877465 @default.
- W3133568295 hasConcept C169258074 @default.
- W3133568295 hasConcept C187320778 @default.
- W3133568295 hasConcept C19269812 @default.
- W3133568295 hasConcept C2816523 @default.
- W3133568295 hasConcept C33923547 @default.
- W3133568295 hasConcept C39432304 @default.