Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133576827> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3133576827 endingPage "015001" @default.
- W3133576827 startingPage "015001" @default.
- W3133576827 abstract "Abstract We present an application of association rule learning to analyze Twitter account follow patterns. In doing so, we develop a basic framework and tutorial for future researchers to build on, which takes advantage of the Twitter API. To demonstrate the method, we take samples of Twitter accounts following Joe Biden and Donald Trump. For each account in our sample population, we pull the account’s 100 most recently followed accounts. This data is cleaned and formatted for use with Python’s apyori package, which uses the well-known apriori algorithm to learn association rules for a given dataset. This work has two objectives: (1) demonstrate the application association rule learning to social media networks and (2) perform exploratory analysis on the resulting association rules. We successfully demonstrate association rule learning in a Jupyter-notebook environment with Python. The resulting association rules indicate some interesting similarities and differences in the networks of Biden’s and Trump’s Twitter followers. The demonstrated method can be generalized to any non-private Twitter account(s). Extensions of our work can apply the method to larger datasets, with a focus on analyzing the learned association rules. Our study demonstrates an innovative application of association rule learning outside of the traditional use cases, which suggests similar opportunities in fields such as politics, education, public health, and more." @default.
- W3133576827 created "2021-03-15" @default.
- W3133576827 creator A5020625508 @default.
- W3133576827 creator A5078102734 @default.
- W3133576827 creator A5091364476 @default.
- W3133576827 date "2022-03-01" @default.
- W3133576827 modified "2023-09-25" @default.
- W3133576827 title "A framework for association rule learning with social media networks" @default.
- W3133576827 cites W1935769119 @default.
- W3133576827 cites W1967097654 @default.
- W3133576827 cites W2538660910 @default.
- W3133576827 cites W2793933142 @default.
- W3133576827 cites W3105053883 @default.
- W3133576827 doi "https://doi.org/10.1088/2633-1357/abe9be" @default.
- W3133576827 hasPublicationYear "2022" @default.
- W3133576827 type Work @default.
- W3133576827 sameAs 3133576827 @default.
- W3133576827 citedByCount "1" @default.
- W3133576827 countsByYear W31335768272023 @default.
- W3133576827 crossrefType "journal-article" @default.
- W3133576827 hasAuthorship W3133576827A5020625508 @default.
- W3133576827 hasAuthorship W3133576827A5078102734 @default.
- W3133576827 hasAuthorship W3133576827A5091364476 @default.
- W3133576827 hasBestOaLocation W31335768271 @default.
- W3133576827 hasConcept C111919701 @default.
- W3133576827 hasConcept C119857082 @default.
- W3133576827 hasConcept C136764020 @default.
- W3133576827 hasConcept C142853389 @default.
- W3133576827 hasConcept C144024400 @default.
- W3133576827 hasConcept C149923435 @default.
- W3133576827 hasConcept C154945302 @default.
- W3133576827 hasConcept C15744967 @default.
- W3133576827 hasConcept C193524817 @default.
- W3133576827 hasConcept C2522767166 @default.
- W3133576827 hasConcept C2908647359 @default.
- W3133576827 hasConcept C41008148 @default.
- W3133576827 hasConcept C518677369 @default.
- W3133576827 hasConcept C519991488 @default.
- W3133576827 hasConcept C542102704 @default.
- W3133576827 hasConcept C81440476 @default.
- W3133576827 hasConceptScore W3133576827C111919701 @default.
- W3133576827 hasConceptScore W3133576827C119857082 @default.
- W3133576827 hasConceptScore W3133576827C136764020 @default.
- W3133576827 hasConceptScore W3133576827C142853389 @default.
- W3133576827 hasConceptScore W3133576827C144024400 @default.
- W3133576827 hasConceptScore W3133576827C149923435 @default.
- W3133576827 hasConceptScore W3133576827C154945302 @default.
- W3133576827 hasConceptScore W3133576827C15744967 @default.
- W3133576827 hasConceptScore W3133576827C193524817 @default.
- W3133576827 hasConceptScore W3133576827C2522767166 @default.
- W3133576827 hasConceptScore W3133576827C2908647359 @default.
- W3133576827 hasConceptScore W3133576827C41008148 @default.
- W3133576827 hasConceptScore W3133576827C518677369 @default.
- W3133576827 hasConceptScore W3133576827C519991488 @default.
- W3133576827 hasConceptScore W3133576827C542102704 @default.
- W3133576827 hasConceptScore W3133576827C81440476 @default.
- W3133576827 hasIssue "1" @default.
- W3133576827 hasLocation W31335768271 @default.
- W3133576827 hasOpenAccess W3133576827 @default.
- W3133576827 hasPrimaryLocation W31335768271 @default.
- W3133576827 hasRelatedWork W2347219288 @default.
- W3133576827 hasRelatedWork W2360227752 @default.
- W3133576827 hasRelatedWork W2363466108 @default.
- W3133576827 hasRelatedWork W2497426327 @default.
- W3133576827 hasRelatedWork W2520720397 @default.
- W3133576827 hasRelatedWork W2524656729 @default.
- W3133576827 hasRelatedWork W2890226230 @default.
- W3133576827 hasRelatedWork W4310157850 @default.
- W3133576827 hasRelatedWork W83069495 @default.
- W3133576827 hasRelatedWork W991599357 @default.
- W3133576827 hasVolume "3" @default.
- W3133576827 isParatext "false" @default.
- W3133576827 isRetracted "false" @default.
- W3133576827 magId "3133576827" @default.
- W3133576827 workType "article" @default.