Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133589238> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3133589238 endingPage "259" @default.
- W3133589238 startingPage "234" @default.
- W3133589238 abstract "Data mining is the approach which can extract useful information from the data. The prediction analysis is the approach which can predict future possibilities based on the current information. The authors propose a hybrid classifier to carry out the heart disease prediction. The hybrid classifier is combination of random forest and decision tree classifier. Moreover, the heart disease prediction technique has three steps, which are data pre-processing, feature extraction, and classification. In this research, random forest classifier is applied for the feature extraction and decision tree classifier is applied for the generation of prediction results. However, random forest classifier will extract the information and decision tree will generate final classifier result. The authors show the results of proposed model using the Python platform. Moreover, the results are compared with support vector machine (SVM) and k-nearest neighbour classifier (KNN)." @default.
- W3133589238 created "2021-03-15" @default.
- W3133589238 creator A5020444644 @default.
- W3133589238 creator A5052866933 @default.
- W3133589238 date "2021-01-01" @default.
- W3133589238 modified "2023-09-27" @default.
- W3133589238 title "Heart Disease Prediction Using Decision Tree and Random Forest Classification Techniques" @default.
- W3133589238 cites W1532110920 @default.
- W3133589238 cites W1976517512 @default.
- W3133589238 cites W1979347584 @default.
- W3133589238 cites W2046959166 @default.
- W3133589238 cites W2054029017 @default.
- W3133589238 cites W2063958902 @default.
- W3133589238 cites W2080084655 @default.
- W3133589238 cites W2094746278 @default.
- W3133589238 cites W2103069675 @default.
- W3133589238 cites W2110820256 @default.
- W3133589238 cites W2167917896 @default.
- W3133589238 cites W2293855839 @default.
- W3133589238 cites W2527838363 @default.
- W3133589238 cites W2592717708 @default.
- W3133589238 cites W2610135452 @default.
- W3133589238 cites W2757234378 @default.
- W3133589238 cites W2773825473 @default.
- W3133589238 cites W2784099471 @default.
- W3133589238 cites W2790718901 @default.
- W3133589238 cites W2895999059 @default.
- W3133589238 cites W2941927753 @default.
- W3133589238 cites W2945358189 @default.
- W3133589238 doi "https://doi.org/10.4018/978-1-7998-6673-2.ch015" @default.
- W3133589238 hasPublicationYear "2021" @default.
- W3133589238 type Work @default.
- W3133589238 sameAs 3133589238 @default.
- W3133589238 citedByCount "2" @default.
- W3133589238 countsByYear W31335892382022 @default.
- W3133589238 crossrefType "book-chapter" @default.
- W3133589238 hasAuthorship W3133589238A5020444644 @default.
- W3133589238 hasAuthorship W3133589238A5052866933 @default.
- W3133589238 hasConcept C119857082 @default.
- W3133589238 hasConcept C12267149 @default.
- W3133589238 hasConcept C124101348 @default.
- W3133589238 hasConcept C153180895 @default.
- W3133589238 hasConcept C154945302 @default.
- W3133589238 hasConcept C169258074 @default.
- W3133589238 hasConcept C41008148 @default.
- W3133589238 hasConcept C52622490 @default.
- W3133589238 hasConcept C5481197 @default.
- W3133589238 hasConcept C84525736 @default.
- W3133589238 hasConcept C95623464 @default.
- W3133589238 hasConceptScore W3133589238C119857082 @default.
- W3133589238 hasConceptScore W3133589238C12267149 @default.
- W3133589238 hasConceptScore W3133589238C124101348 @default.
- W3133589238 hasConceptScore W3133589238C153180895 @default.
- W3133589238 hasConceptScore W3133589238C154945302 @default.
- W3133589238 hasConceptScore W3133589238C169258074 @default.
- W3133589238 hasConceptScore W3133589238C41008148 @default.
- W3133589238 hasConceptScore W3133589238C52622490 @default.
- W3133589238 hasConceptScore W3133589238C5481197 @default.
- W3133589238 hasConceptScore W3133589238C84525736 @default.
- W3133589238 hasConceptScore W3133589238C95623464 @default.
- W3133589238 hasLocation W31335892381 @default.
- W3133589238 hasOpenAccess W3133589238 @default.
- W3133589238 hasPrimaryLocation W31335892381 @default.
- W3133589238 hasRelatedWork W2022201514 @default.
- W3133589238 hasRelatedWork W2735608799 @default.
- W3133589238 hasRelatedWork W3127425528 @default.
- W3133589238 hasRelatedWork W4200306072 @default.
- W3133589238 hasRelatedWork W4205958290 @default.
- W3133589238 hasRelatedWork W4226398573 @default.
- W3133589238 hasRelatedWork W4249229055 @default.
- W3133589238 hasRelatedWork W4320483443 @default.
- W3133589238 hasRelatedWork W4323902652 @default.
- W3133589238 hasRelatedWork W4361022427 @default.
- W3133589238 isParatext "false" @default.
- W3133589238 isRetracted "false" @default.
- W3133589238 magId "3133589238" @default.
- W3133589238 workType "book-chapter" @default.