Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133606085> ?p ?o ?g. }
- W3133606085 abstract "Abstract Combining multiple types of genomic, transcriptional, proteomic, and epigenetic datasets has the potential to reveal biological mechanisms across multiple scales, and may lead to more accurate models for clinical decision support. Developing efficient models that can derive clinical outcomes from high-dimensional data remains problematical; challenges include the integration of multiple types of omics data, inclusion of biological background knowledge, and developing machine learning models that are able to deal with this high dimensionality while having only few samples from which to derive a model. We developed DeepMOCCA, a framework for multi-omics cancer analysis. We combine different types of omics data using biological relations between genes, transcripts, and proteins, combine the multi-omics data with background knowledge in the form of protein–protein interaction networks, and use graph convolution neural networks to exploit this combination of multi-omics data and background knowledge. DeepMOCCA predicts survival time for individual patient samples for 33 cancer types and outperforms most existing survival prediction methods. Moreover, DeepMOCCA includes a graph attention mechanism which prioritizes driver genes and prognostic markers in a patient-specific manner; the attention mechanism can be used to identify drivers and prognostic markers within cohorts and individual patients. Author summary Linking the features of tumors to a prognosis for the patient is a critical part of managing cancer. Many methods have been applied to this problem but we still lack accurate prognostic markers for many cancers. We now have more information than ever before on the state of the cancer genome, the epigenetic changes in tumors, and gene expression at both RNA and protein levels. Here, we address the question of how this data can be used to predict cancer survival and discover which tumor genes make the greatest contribution to the prognosis in individual tumor samples. We have developed a computational model, DeepMOCCA, that uses artificial neural networks underpinned by a large graph constructed from background knowledge concerning the functional interactions between genes and their products. We show that with our method, DeepMOCCA can predict cancer survival time based entirely on features of the tumor at a cellular and molecular level. The method confirms many existing genes that affect survival but for some cancers suggests new genes, either not implicated in survival before or not known to be important in that particular cancer. The ability to predict the important features in individual tumors provided by our method raises the possibility of personalized therapy based on the gene or network dominating the prognosis for that patient." @default.
- W3133606085 created "2021-03-15" @default.
- W3133606085 creator A5043808311 @default.
- W3133606085 creator A5059588755 @default.
- W3133606085 creator A5070294716 @default.
- W3133606085 creator A5074627123 @default.
- W3133606085 creator A5079579378 @default.
- W3133606085 creator A5089900113 @default.
- W3133606085 date "2021-03-02" @default.
- W3133606085 modified "2023-09-25" @default.
- W3133606085 title "DeepMOCCA: A pan-cancer prognostic model identifies personalized prognostic markers through graph attention and multi-omics data integration" @default.
- W3133606085 cites W1939527446 @default.
- W3133606085 cites W1956111485 @default.
- W3133606085 cites W1975954014 @default.
- W3133606085 cites W1984068087 @default.
- W3133606085 cites W2005895632 @default.
- W3133606085 cites W2012034410 @default.
- W3133606085 cites W2034537627 @default.
- W3133606085 cites W2034730291 @default.
- W3133606085 cites W2052588102 @default.
- W3133606085 cites W2087779040 @default.
- W3133606085 cites W2097694375 @default.
- W3133606085 cites W2111547563 @default.
- W3133606085 cites W2113310608 @default.
- W3133606085 cites W2118877325 @default.
- W3133606085 cites W2131581981 @default.
- W3133606085 cites W2137297899 @default.
- W3133606085 cites W2141014201 @default.
- W3133606085 cites W2142457016 @default.
- W3133606085 cites W2147078478 @default.
- W3133606085 cites W2148405421 @default.
- W3133606085 cites W2152656267 @default.
- W3133606085 cites W2158485828 @default.
- W3133606085 cites W2161112598 @default.
- W3133606085 cites W2230320310 @default.
- W3133606085 cites W2231513665 @default.
- W3133606085 cites W2264481086 @default.
- W3133606085 cites W2417483443 @default.
- W3133606085 cites W2507998592 @default.
- W3133606085 cites W2521492299 @default.
- W3133606085 cites W2586715990 @default.
- W3133606085 cites W2587743144 @default.
- W3133606085 cites W2611138580 @default.
- W3133606085 cites W2762272043 @default.
- W3133606085 cites W2774185583 @default.
- W3133606085 cites W2790295707 @default.
- W3133606085 cites W2792674991 @default.
- W3133606085 cites W2795989238 @default.
- W3133606085 cites W2796153225 @default.
- W3133606085 cites W2796153844 @default.
- W3133606085 cites W2796208126 @default.
- W3133606085 cites W2796408191 @default.
- W3133606085 cites W2796464520 @default.
- W3133606085 cites W2797883881 @default.
- W3133606085 cites W2803334733 @default.
- W3133606085 cites W2808845633 @default.
- W3133606085 cites W2891589486 @default.
- W3133606085 cites W2899316384 @default.
- W3133606085 cites W2900569176 @default.
- W3133606085 cites W2910705748 @default.
- W3133606085 cites W2912343508 @default.
- W3133606085 cites W2914094854 @default.
- W3133606085 cites W2921485464 @default.
- W3133606085 cites W2945616121 @default.
- W3133606085 cites W2949280048 @default.
- W3133606085 cites W2949492942 @default.
- W3133606085 cites W2950829512 @default.
- W3133606085 cites W2951209146 @default.
- W3133606085 cites W2954499361 @default.
- W3133606085 cites W2963232127 @default.
- W3133606085 cites W2964649258 @default.
- W3133606085 cites W2969140781 @default.
- W3133606085 cites W2972935357 @default.
- W3133606085 cites W2978882452 @default.
- W3133606085 cites W2994958138 @default.
- W3133606085 cites W3004781275 @default.
- W3133606085 cites W3009545736 @default.
- W3133606085 cites W3012148626 @default.
- W3133606085 cites W3027332720 @default.
- W3133606085 cites W3031003892 @default.
- W3133606085 cites W3046874697 @default.
- W3133606085 cites W3047825284 @default.
- W3133606085 cites W3121756359 @default.
- W3133606085 cites W4205947740 @default.
- W3133606085 doi "https://doi.org/10.1101/2021.03.02.433454" @default.
- W3133606085 hasPublicationYear "2021" @default.
- W3133606085 type Work @default.
- W3133606085 sameAs 3133606085 @default.
- W3133606085 citedByCount "4" @default.
- W3133606085 countsByYear W31336060852021 @default.
- W3133606085 countsByYear W31336060852022 @default.
- W3133606085 countsByYear W31336060852023 @default.
- W3133606085 crossrefType "posted-content" @default.
- W3133606085 hasAuthorship W3133606085A5043808311 @default.
- W3133606085 hasAuthorship W3133606085A5059588755 @default.
- W3133606085 hasAuthorship W3133606085A5070294716 @default.
- W3133606085 hasAuthorship W3133606085A5074627123 @default.
- W3133606085 hasAuthorship W3133606085A5079579378 @default.
- W3133606085 hasAuthorship W3133606085A5089900113 @default.
- W3133606085 hasBestOaLocation W31336060851 @default.