Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133622253> ?p ?o ?g. }
- W3133622253 endingPage "349" @default.
- W3133622253 startingPage "341" @default.
- W3133622253 abstract "Abstract Machine Learning (ML) is on the rise in medicine, promising improved diagnostic, therapeutic and prognostic clinical tools. While these technological innovations are bound to transform health care, they also bring new ethical concerns to the forefront. One particularly elusive challenge regards discriminatory algorithmic judgements based on biases inherent in the training data. A common line of reasoning distinguishes between justified differential treatments that mirror true disparities between socially salient groups, and unjustified biases which do not, leading to misdiagnosis and erroneous treatment. In the curation of training data this strategy runs into severe problems though, since distinguishing between the two can be next to impossible. We thus plead for a pragmatist dealing with algorithmic bias in healthcare environments. By recurring to a recent reformulation of William James’s pragmatist understanding of truth, we recommend that, instead of aiming at a supposedly objective truth, outcome-based therapeutic usefulness should serve as the guiding principle for assessing ML applications in medicine." @default.
- W3133622253 created "2021-03-15" @default.
- W3133622253 creator A5009805392 @default.
- W3133622253 creator A5047514782 @default.
- W3133622253 creator A5058102122 @default.
- W3133622253 date "2021-03-13" @default.
- W3133622253 modified "2023-10-11" @default.
- W3133622253 title "Towards a pragmatist dealing with algorithmic bias in medical machine learning" @default.
- W3133622253 cites W1969924141 @default.
- W3133622253 cites W1990729205 @default.
- W3133622253 cites W2003792574 @default.
- W3133622253 cites W2035626196 @default.
- W3133622253 cites W2046492788 @default.
- W3133622253 cites W2092467683 @default.
- W3133622253 cites W2093083435 @default.
- W3133622253 cites W2145860152 @default.
- W3133622253 cites W2155379038 @default.
- W3133622253 cites W2318723339 @default.
- W3133622253 cites W2346273735 @default.
- W3133622253 cites W2560805062 @default.
- W3133622253 cites W2568677562 @default.
- W3133622253 cites W2584805976 @default.
- W3133622253 cites W2614076001 @default.
- W3133622253 cites W2742108348 @default.
- W3133622253 cites W2766599134 @default.
- W3133622253 cites W2888065608 @default.
- W3133622253 cites W2898694742 @default.
- W3133622253 cites W2899768131 @default.
- W3133622253 cites W2904339902 @default.
- W3133622253 cites W2905810301 @default.
- W3133622253 cites W2906295032 @default.
- W3133622253 cites W2908201961 @default.
- W3133622253 cites W2915292867 @default.
- W3133622253 cites W2962787423 @default.
- W3133622253 cites W2966681921 @default.
- W3133622253 cites W2983682783 @default.
- W3133622253 cites W2990157486 @default.
- W3133622253 cites W2991542819 @default.
- W3133622253 cites W2996698847 @default.
- W3133622253 cites W2998886612 @default.
- W3133622253 cites W3000439976 @default.
- W3133622253 cites W3008680281 @default.
- W3133622253 cites W3009583110 @default.
- W3133622253 cites W3013677002 @default.
- W3133622253 cites W3093861859 @default.
- W3133622253 cites W3097373745 @default.
- W3133622253 cites W3100711616 @default.
- W3133622253 cites W4207012491 @default.
- W3133622253 cites W4233029970 @default.
- W3133622253 cites W4239235761 @default.
- W3133622253 cites W4246870394 @default.
- W3133622253 cites W4252425879 @default.
- W3133622253 doi "https://doi.org/10.1007/s11019-021-10008-5" @default.
- W3133622253 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7955212" @default.
- W3133622253 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33713239" @default.
- W3133622253 hasPublicationYear "2021" @default.
- W3133622253 type Work @default.
- W3133622253 sameAs 3133622253 @default.
- W3133622253 citedByCount "15" @default.
- W3133622253 countsByYear W31336222532021 @default.
- W3133622253 countsByYear W31336222532022 @default.
- W3133622253 countsByYear W31336222532023 @default.
- W3133622253 crossrefType "journal-article" @default.
- W3133622253 hasAuthorship W3133622253A5009805392 @default.
- W3133622253 hasAuthorship W3133622253A5047514782 @default.
- W3133622253 hasAuthorship W3133622253A5058102122 @default.
- W3133622253 hasBestOaLocation W31336222531 @default.
- W3133622253 hasConcept C110099512 @default.
- W3133622253 hasConcept C111472728 @default.
- W3133622253 hasConcept C121242521 @default.
- W3133622253 hasConcept C138885662 @default.
- W3133622253 hasConcept C142724271 @default.
- W3133622253 hasConcept C154945302 @default.
- W3133622253 hasConcept C15744967 @default.
- W3133622253 hasConcept C158573231 @default.
- W3133622253 hasConcept C160735492 @default.
- W3133622253 hasConcept C17744445 @default.
- W3133622253 hasConcept C199539241 @default.
- W3133622253 hasConcept C204787440 @default.
- W3133622253 hasConcept C2780719617 @default.
- W3133622253 hasConcept C41008148 @default.
- W3133622253 hasConcept C71924100 @default.
- W3133622253 hasConceptScore W3133622253C110099512 @default.
- W3133622253 hasConceptScore W3133622253C111472728 @default.
- W3133622253 hasConceptScore W3133622253C121242521 @default.
- W3133622253 hasConceptScore W3133622253C138885662 @default.
- W3133622253 hasConceptScore W3133622253C142724271 @default.
- W3133622253 hasConceptScore W3133622253C154945302 @default.
- W3133622253 hasConceptScore W3133622253C15744967 @default.
- W3133622253 hasConceptScore W3133622253C158573231 @default.
- W3133622253 hasConceptScore W3133622253C160735492 @default.
- W3133622253 hasConceptScore W3133622253C17744445 @default.
- W3133622253 hasConceptScore W3133622253C199539241 @default.
- W3133622253 hasConceptScore W3133622253C204787440 @default.
- W3133622253 hasConceptScore W3133622253C2780719617 @default.
- W3133622253 hasConceptScore W3133622253C41008148 @default.
- W3133622253 hasConceptScore W3133622253C71924100 @default.
- W3133622253 hasFunder F4320310466 @default.