Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133640374> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3133640374 endingPage "11" @default.
- W3133640374 startingPage "1" @default.
- W3133640374 abstract "Building footprint delineation from remote sensing imagery is a basic task in surveying and mapping and geographic information system (GIS), which benefits many engineering applications but requires an enormous amount of human delineation. In this study, we aim to find a way to replace human delineation with automated algorithms. For this purpose, we designed a novel pipeline for the automated production of building vector maps from aerial images, which consists of a bounding-box generation module, a graph convolutional network (GCN)-based polygon prediction module, and an empirical polygon regularization module. First, we introduce the bounding box generation module based on region-based object detection, which along with our overlap cropping strategy is used to generate a bounding box for each building instance. The generated bounding boxes have a horizontal rectangle version and a rotated version, which are used to initialize the next stage of our method. Second, we propose a GCN-based method, which is the core of this study, to conduct the initial accurate building polygon prediction by integrating multiresolution optimization and multilevel loss constraints. Our proposed method, to the authors’ best knowledge, is the first of its kind that introduces GCN to building extraction. The final step is to apply a regularization algorithm to translate the predicted polygons into structured and highly accurate building footprints. We validated the proposed method on two large aerial building data sets, WHU data set and Inria data set, where it was shown to significantly outperform other state-of-the-art methods more than 10%. Specifically, with the ground-truth rotated bounding boxes of buildings, our method is able to automatically delineate 91% of the buildings in the WHU data set and with the predicted rotated bounding the percent reached human-level delineation." @default.
- W3133640374 created "2021-03-15" @default.
- W3133640374 creator A5031588692 @default.
- W3133640374 creator A5083392154 @default.
- W3133640374 date "2022-01-01" @default.
- W3133640374 modified "2023-10-01" @default.
- W3133640374 title "Graph Convolutional Networks for the Automated Production of Building Vector Maps From Aerial Images" @default.
- W3133640374 cites W1903029394 @default.
- W3133640374 cites W1981934656 @default.
- W3133640374 cites W2055702796 @default.
- W3133640374 cites W2116341502 @default.
- W3133640374 cites W2141573384 @default.
- W3133640374 cites W2168548458 @default.
- W3133640374 cites W2558460151 @default.
- W3133640374 cites W2560023338 @default.
- W3133640374 cites W2609402060 @default.
- W3133640374 cites W2609825896 @default.
- W3133640374 cites W2610034660 @default.
- W3133640374 cites W2625829240 @default.
- W3133640374 cites W2795276939 @default.
- W3133640374 cites W2806070179 @default.
- W3133640374 cites W2892621946 @default.
- W3133640374 cites W2897936062 @default.
- W3133640374 cites W2908320224 @default.
- W3133640374 cites W2915731581 @default.
- W3133640374 cites W2939647427 @default.
- W3133640374 cites W2942105743 @default.
- W3133640374 cites W2946373483 @default.
- W3133640374 cites W2963037989 @default.
- W3133640374 cites W2963084622 @default.
- W3133640374 cites W2963927307 @default.
- W3133640374 cites W2979394918 @default.
- W3133640374 cites W2979913009 @default.
- W3133640374 cites W2982770724 @default.
- W3133640374 cites W2996327453 @default.
- W3133640374 cites W3011667710 @default.
- W3133640374 cites W3024007459 @default.
- W3133640374 cites W3034265573 @default.
- W3133640374 cites W3106228955 @default.
- W3133640374 cites W3118358609 @default.
- W3133640374 cites W3119729445 @default.
- W3133640374 doi "https://doi.org/10.1109/tgrs.2021.3060770" @default.
- W3133640374 hasPublicationYear "2022" @default.
- W3133640374 type Work @default.
- W3133640374 sameAs 3133640374 @default.
- W3133640374 citedByCount "7" @default.
- W3133640374 countsByYear W31336403742022 @default.
- W3133640374 countsByYear W31336403742023 @default.
- W3133640374 crossrefType "journal-article" @default.
- W3133640374 hasAuthorship W3133640374A5031588692 @default.
- W3133640374 hasAuthorship W3133640374A5083392154 @default.
- W3133640374 hasConcept C115961682 @default.
- W3133640374 hasConcept C124101348 @default.
- W3133640374 hasConcept C126042441 @default.
- W3133640374 hasConcept C147037132 @default.
- W3133640374 hasConcept C154945302 @default.
- W3133640374 hasConcept C190694206 @default.
- W3133640374 hasConcept C2776429412 @default.
- W3133640374 hasConcept C41008148 @default.
- W3133640374 hasConcept C63584917 @default.
- W3133640374 hasConcept C76155785 @default.
- W3133640374 hasConceptScore W3133640374C115961682 @default.
- W3133640374 hasConceptScore W3133640374C124101348 @default.
- W3133640374 hasConceptScore W3133640374C126042441 @default.
- W3133640374 hasConceptScore W3133640374C147037132 @default.
- W3133640374 hasConceptScore W3133640374C154945302 @default.
- W3133640374 hasConceptScore W3133640374C190694206 @default.
- W3133640374 hasConceptScore W3133640374C2776429412 @default.
- W3133640374 hasConceptScore W3133640374C41008148 @default.
- W3133640374 hasConceptScore W3133640374C63584917 @default.
- W3133640374 hasConceptScore W3133640374C76155785 @default.
- W3133640374 hasFunder F4320321001 @default.
- W3133640374 hasLocation W31336403741 @default.
- W3133640374 hasOpenAccess W3133640374 @default.
- W3133640374 hasPrimaryLocation W31336403741 @default.
- W3133640374 hasRelatedWork W2082098299 @default.
- W3133640374 hasRelatedWork W2369744843 @default.
- W3133640374 hasRelatedWork W3107708151 @default.
- W3133640374 hasRelatedWork W3133640374 @default.
- W3133640374 hasRelatedWork W3195565106 @default.
- W3133640374 hasRelatedWork W3215258196 @default.
- W3133640374 hasRelatedWork W4286859703 @default.
- W3133640374 hasRelatedWork W4287023274 @default.
- W3133640374 hasRelatedWork W4287588076 @default.
- W3133640374 hasRelatedWork W116926196 @default.
- W3133640374 hasVolume "60" @default.
- W3133640374 isParatext "false" @default.
- W3133640374 isRetracted "false" @default.
- W3133640374 magId "3133640374" @default.
- W3133640374 workType "article" @default.