Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133647560> ?p ?o ?g. }
- W3133647560 abstract "This study details application of deep learning for automatic segmentation of the ascending and descending aorta from 2D phase-contrast cine magnetic resonance imaging for automatic aortic analysis on the large MESA cohort with assessment on an external cohort of thoracic aortic aneurysm (TAA) patients. This study includes images and corresponding analysis of the ascending and descending aorta at the pulmonary artery bifurcation from the MESA study. Train, validation, and internal test sets consisted of 1123 studies (24,282 images), 374 studies (8067 images), and 375 studies (8069 images), respectively. The external test set of TAAs consisted of 37 studies (3224 images). CNN performance was evaluated utilizing a dice coefficient and concordance correlation coefficients (CCC) of geometric parameters. Dice coefficients were as high as 97.55% (CI: 97.47-97.62%) and 93.56% (CI: 84.63-96.68%) on the internal and external test of TAAs, respectively. CCC for maximum and minimum and ascending aortic area were 0.969 and 0.950, respectively, on the internal test set and 0.997 and 0.995, respectively, for the external test. The absolute differences between manual and deep learning segmentations for ascending and descending aortic distensibility were 0.0194 × 10-4 ± 9.67 × 10-4 and 0.002 ± 0.001 mmHg-1, respectively, on the internal test set and 0.44 × 10-4 ± 20.4 × 10-4 and 0.002 ± 0.001 mmHg-1, respectively, on the external test set. We successfully developed a U-Net-based aortic segmentation and analysis algorithm in both MESA and in external cases of TAA." @default.
- W3133647560 created "2021-03-15" @default.
- W3133647560 creator A5006021560 @default.
- W3133647560 creator A5017083838 @default.
- W3133647560 creator A5019742391 @default.
- W3133647560 creator A5020348286 @default.
- W3133647560 creator A5023958034 @default.
- W3133647560 creator A5032217545 @default.
- W3133647560 creator A5039978155 @default.
- W3133647560 creator A5054737528 @default.
- W3133647560 creator A5060377756 @default.
- W3133647560 creator A5063023739 @default.
- W3133647560 creator A5063032838 @default.
- W3133647560 creator A5079533727 @default.
- W3133647560 creator A5090349328 @default.
- W3133647560 date "2022-03-01" @default.
- W3133647560 modified "2023-10-17" @default.
- W3133647560 title "Deep Learning-based Automated Aortic Area and Distensibility Assessment: the Multi-Ethnic Study of Atherosclerosis (MESA)" @default.
- W3133647560 cites W138390652 @default.
- W3133647560 cites W154416618 @default.
- W3133647560 cites W1987869189 @default.
- W3133647560 cites W2059239866 @default.
- W3133647560 cites W2112856272 @default.
- W3133647560 cites W2145041280 @default.
- W3133647560 cites W2154230830 @default.
- W3133647560 cites W2156097706 @default.
- W3133647560 cites W2171546997 @default.
- W3133647560 cites W2195399705 @default.
- W3133647560 cites W2323929895 @default.
- W3133647560 cites W2724527973 @default.
- W3133647560 cites W2725984455 @default.
- W3133647560 cites W2754132686 @default.
- W3133647560 cites W2804047627 @default.
- W3133647560 cites W2897944447 @default.
- W3133647560 cites W2906879808 @default.
- W3133647560 cites W2914551689 @default.
- W3133647560 cites W3105445034 @default.
- W3133647560 cites W3109465209 @default.
- W3133647560 doi "https://doi.org/10.1007/s10278-021-00529-z" @default.
- W3133647560 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35233722" @default.
- W3133647560 hasPublicationYear "2022" @default.
- W3133647560 type Work @default.
- W3133647560 sameAs 3133647560 @default.
- W3133647560 citedByCount "0" @default.
- W3133647560 crossrefType "journal-article" @default.
- W3133647560 hasAuthorship W3133647560A5006021560 @default.
- W3133647560 hasAuthorship W3133647560A5017083838 @default.
- W3133647560 hasAuthorship W3133647560A5019742391 @default.
- W3133647560 hasAuthorship W3133647560A5020348286 @default.
- W3133647560 hasAuthorship W3133647560A5023958034 @default.
- W3133647560 hasAuthorship W3133647560A5032217545 @default.
- W3133647560 hasAuthorship W3133647560A5039978155 @default.
- W3133647560 hasAuthorship W3133647560A5054737528 @default.
- W3133647560 hasAuthorship W3133647560A5060377756 @default.
- W3133647560 hasAuthorship W3133647560A5063023739 @default.
- W3133647560 hasAuthorship W3133647560A5063032838 @default.
- W3133647560 hasAuthorship W3133647560A5079533727 @default.
- W3133647560 hasAuthorship W3133647560A5090349328 @default.
- W3133647560 hasBestOaLocation W31336475603 @default.
- W3133647560 hasConcept C124504099 @default.
- W3133647560 hasConcept C126322002 @default.
- W3133647560 hasConcept C126838900 @default.
- W3133647560 hasConcept C143409427 @default.
- W3133647560 hasConcept C154945302 @default.
- W3133647560 hasConcept C163892561 @default.
- W3133647560 hasConcept C164705383 @default.
- W3133647560 hasConcept C199360897 @default.
- W3133647560 hasConcept C2776864027 @default.
- W3133647560 hasConcept C2777323849 @default.
- W3133647560 hasConcept C2778249958 @default.
- W3133647560 hasConcept C2779980429 @default.
- W3133647560 hasConcept C2780663194 @default.
- W3133647560 hasConcept C2780847584 @default.
- W3133647560 hasConcept C2780940541 @default.
- W3133647560 hasConcept C2989005 @default.
- W3133647560 hasConcept C41008148 @default.
- W3133647560 hasConcept C71924100 @default.
- W3133647560 hasConcept C89600930 @default.
- W3133647560 hasConceptScore W3133647560C124504099 @default.
- W3133647560 hasConceptScore W3133647560C126322002 @default.
- W3133647560 hasConceptScore W3133647560C126838900 @default.
- W3133647560 hasConceptScore W3133647560C143409427 @default.
- W3133647560 hasConceptScore W3133647560C154945302 @default.
- W3133647560 hasConceptScore W3133647560C163892561 @default.
- W3133647560 hasConceptScore W3133647560C164705383 @default.
- W3133647560 hasConceptScore W3133647560C199360897 @default.
- W3133647560 hasConceptScore W3133647560C2776864027 @default.
- W3133647560 hasConceptScore W3133647560C2777323849 @default.
- W3133647560 hasConceptScore W3133647560C2778249958 @default.
- W3133647560 hasConceptScore W3133647560C2779980429 @default.
- W3133647560 hasConceptScore W3133647560C2780663194 @default.
- W3133647560 hasConceptScore W3133647560C2780847584 @default.
- W3133647560 hasConceptScore W3133647560C2780940541 @default.
- W3133647560 hasConceptScore W3133647560C2989005 @default.
- W3133647560 hasConceptScore W3133647560C41008148 @default.
- W3133647560 hasConceptScore W3133647560C71924100 @default.
- W3133647560 hasConceptScore W3133647560C89600930 @default.
- W3133647560 hasLocation W31336475601 @default.
- W3133647560 hasLocation W31336475602 @default.
- W3133647560 hasLocation W31336475603 @default.