Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133654906> ?p ?o ?g. }
- W3133654906 endingPage "1527" @default.
- W3133654906 startingPage "1517" @default.
- W3133654906 abstract "ConspectusLayered transition-metal dichalcogenides (TMDs) are intriguing two-dimensional (2D) compounds where metal and chalcogen atoms are covalently bonded in each monolayer, and the monolayers are held together by weak van der Waals forces. Distinct from graphene, which is chemically inert, layered TMDs exhibit a wide range of electronic, optical, catalytic, and magnetic properties dependent upon their compositions, crystal structures, and thicknesses, which make them fundamentally and technologically important. TMD nanostructures are traditionally synthesized using gas-phase chemical deposition methods, which are typically limited to small-scale samples of substrate-bound planar materials. Colloidal synthesis has emerged as an alternative synthesis approach to enable the scalable synthesis of free-standing TMDs. The judicious selection of precursors, solvents, and capping ligands together with the optimization of synthesis parameters such as concentrations and temperatures leads to the fabrication of colloidal TMD nanostructures exhibiting tunable properties. In addition, understanding the formation and transformation of TMD nanostructures in solution contributes to the discovery of important structure–function relationships, which may be extendable to other anisotropic systems.In this Account, we summarize recent progress in the colloidal synthesis, characterization, and applications of TMD nanostructures with tunable compositions, structures, and thicknesses. On the basis of the preparation of Mo- and W-based disulfide, diselenide, and ditelluride nanostructures, we discuss examples of phase engineering where various metastable TMD compounds can be directly accessed at low temperatures in solution. We also analyze the chemistry involved in broadly tuning the composition across the MoSe2–WSe2, WS2–WSe2, and MoTe2–WTe2 solid solutions as well as atomic-level microscopic characterization and the resulting composition-tunable properties. We then highlight how the high densities of defects in the colloidally synthesized TMD nanostructures enable unique catalytic properties, including their ability to facilitate the selective hydrogenation of substituted nitroarenes using molecular hydrogen. Finally, using this library of colloidal TMD nanostructures as substrates, we discuss the pathways by which noble metals deposit onto them in solution. We highlight the importance of the relative strengths of the interfacial metal–chalcogen bonds in determining the sizes and morphologies of the deposited noble metal components. These synthesis capabilities for colloidal TMD nanostructures, which have been generalized to a library of composition-tunable phases, enable new systematic studies of structure–property relationships and chemical reactivity in this important class of 2D materials." @default.
- W3133654906 created "2021-03-15" @default.
- W3133654906 creator A5002374780 @default.
- W3133654906 creator A5041204959 @default.
- W3133654906 creator A5069865883 @default.
- W3133654906 date "2021-03-04" @default.
- W3133654906 modified "2023-09-30" @default.
- W3133654906 title "Colloidal Nanostructures of Transition-Metal Dichalcogenides" @default.
- W3133654906 cites W1139314269 @default.
- W3133654906 cites W1828239661 @default.
- W3133654906 cites W1864507840 @default.
- W3133654906 cites W1950329711 @default.
- W3133654906 cites W1965097716 @default.
- W3133654906 cites W1980790675 @default.
- W3133654906 cites W1987665052 @default.
- W3133654906 cites W1990510013 @default.
- W3133654906 cites W2000500676 @default.
- W3133654906 cites W2011899447 @default.
- W3133654906 cites W2025472145 @default.
- W3133654906 cites W2056176783 @default.
- W3133654906 cites W2079138239 @default.
- W3133654906 cites W2086270926 @default.
- W3133654906 cites W2115786064 @default.
- W3133654906 cites W2118258793 @default.
- W3133654906 cites W2120665703 @default.
- W3133654906 cites W2127351808 @default.
- W3133654906 cites W2133795748 @default.
- W3133654906 cites W2154161381 @default.
- W3133654906 cites W2220596051 @default.
- W3133654906 cites W2268419830 @default.
- W3133654906 cites W2299584942 @default.
- W3133654906 cites W2314895480 @default.
- W3133654906 cites W2322102421 @default.
- W3133654906 cites W2325339608 @default.
- W3133654906 cites W2326308230 @default.
- W3133654906 cites W2327640115 @default.
- W3133654906 cites W2329389299 @default.
- W3133654906 cites W2333284372 @default.
- W3133654906 cites W2338620906 @default.
- W3133654906 cites W2415103154 @default.
- W3133654906 cites W2516840360 @default.
- W3133654906 cites W2529707330 @default.
- W3133654906 cites W2594793979 @default.
- W3133654906 cites W2597054437 @default.
- W3133654906 cites W2623394712 @default.
- W3133654906 cites W2627001981 @default.
- W3133654906 cites W2741003522 @default.
- W3133654906 cites W2764003394 @default.
- W3133654906 cites W2765673357 @default.
- W3133654906 cites W2765870341 @default.
- W3133654906 cites W2796240071 @default.
- W3133654906 cites W2797506253 @default.
- W3133654906 cites W2804762466 @default.
- W3133654906 cites W2809403136 @default.
- W3133654906 cites W2889203279 @default.
- W3133654906 cites W2896548374 @default.
- W3133654906 cites W2900217545 @default.
- W3133654906 cites W2911196068 @default.
- W3133654906 cites W2911457921 @default.
- W3133654906 cites W2945615773 @default.
- W3133654906 cites W2964255807 @default.
- W3133654906 cites W2966379946 @default.
- W3133654906 cites W2973846138 @default.
- W3133654906 cites W3004405026 @default.
- W3133654906 cites W3007037088 @default.
- W3133654906 cites W3015748142 @default.
- W3133654906 cites W3030776535 @default.
- W3133654906 cites W3045667793 @default.
- W3133654906 cites W3047806070 @default.
- W3133654906 cites W3092458585 @default.
- W3133654906 cites W3107762968 @default.
- W3133654906 doi "https://doi.org/10.1021/acs.accounts.1c00006" @default.
- W3133654906 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33662209" @default.
- W3133654906 hasPublicationYear "2021" @default.
- W3133654906 type Work @default.
- W3133654906 sameAs 3133654906 @default.
- W3133654906 citedByCount "24" @default.
- W3133654906 countsByYear W31336549062021 @default.
- W3133654906 countsByYear W31336549062022 @default.
- W3133654906 countsByYear W31336549062023 @default.
- W3133654906 crossrefType "journal-article" @default.
- W3133654906 hasAuthorship W3133654906A5002374780 @default.
- W3133654906 hasAuthorship W3133654906A5041204959 @default.
- W3133654906 hasAuthorship W3133654906A5069865883 @default.
- W3133654906 hasConcept C106773901 @default.
- W3133654906 hasConcept C126061179 @default.
- W3133654906 hasConcept C158733187 @default.
- W3133654906 hasConcept C161790260 @default.
- W3133654906 hasConcept C171250308 @default.
- W3133654906 hasConcept C178790620 @default.
- W3133654906 hasConcept C185592680 @default.
- W3133654906 hasConcept C186187911 @default.
- W3133654906 hasConcept C192562407 @default.
- W3133654906 hasConcept C30080830 @default.
- W3133654906 hasConcept C32909587 @default.
- W3133654906 hasConcept C7070889 @default.
- W3133654906 hasConcept C8010536 @default.
- W3133654906 hasConceptScore W3133654906C106773901 @default.