Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133663968> ?p ?o ?g. }
- W3133663968 endingPage "37922" @default.
- W3133663968 startingPage "37905" @default.
- W3133663968 abstract "Due to a growing number of people who carry out various adrenaline activities or adventure tourism and stay in the mountains and other inaccessible places, there is an increasing need to organize a search and rescue operation (SAR) to provide assistance and health care to the injured. The goal of SAR operation is to search the largest area of the territory in the shortest time possible and find a lost or injured person. Today, drones (UAVs or drones) are increasingly involved in search operations, as they can capture a large, controlled area in a short amount of time. However, a detailed examination of a large amount of recorded material remains a problem. Even for an expert, it is not easy to find searched people who are relatively small considering the area where they are, often sheltered by vegetation or merged with the ground and in unusual positions due to falls, injuries, or exhaustion. Therefore, the automatic detection of persons and objects in images/videos taken by drones in these operations is very significant. In this paper, the reliability of existing state-of-the-art detectors such as Faster R-CNN, YOLOv4, RetinaNet, and Cascade R-CNN on a VisDrone benchmark and custom-made dataset SARD build to simulate rescue scenes was investigated. After training the models on selected datasets, detection results were compared. Because of the high speed and accuracy and the small number of false detections, the YOLOv4 detector was chosen for further examination. YOLOv4 model results related to different network sizes, different detection accuracies, and transfer learning settings were analyzed. The model robustness to weather conditions and motion blur were also investigated. The paper proposes a model that can be used in SAR operations because of the excellent results in detecting people in search and rescue scenarios." @default.
- W3133663968 created "2021-03-15" @default.
- W3133663968 creator A5030914639 @default.
- W3133663968 creator A5065120677 @default.
- W3133663968 date "2021-01-01" @default.
- W3133663968 modified "2023-10-16" @default.
- W3133663968 title "Automatic Person Detection in Search and Rescue Operations Using Deep CNN Detectors" @default.
- W3133663968 cites W1155377598 @default.
- W3133663968 cites W1492541562 @default.
- W3133663968 cites W1536680647 @default.
- W3133663968 cites W1548663381 @default.
- W3133663968 cites W1861492603 @default.
- W3133663968 cites W1969161726 @default.
- W3133663968 cites W2037227137 @default.
- W3133663968 cites W2052452467 @default.
- W3133663968 cites W2097989534 @default.
- W3133663968 cites W2102605133 @default.
- W3133663968 cites W2109255472 @default.
- W3133663968 cites W2117539524 @default.
- W3133663968 cites W2162842531 @default.
- W3133663968 cites W2171362124 @default.
- W3133663968 cites W2194775991 @default.
- W3133663968 cites W2233456439 @default.
- W3133663968 cites W2251608823 @default.
- W3133663968 cites W2518876086 @default.
- W3133663968 cites W2519586580 @default.
- W3133663968 cites W2538300499 @default.
- W3133663968 cites W2549139847 @default.
- W3133663968 cites W2565639579 @default.
- W3133663968 cites W2570343428 @default.
- W3133663968 cites W2597452176 @default.
- W3133663968 cites W2625286981 @default.
- W3133663968 cites W2769604969 @default.
- W3133663968 cites W2782522152 @default.
- W3133663968 cites W2892352840 @default.
- W3133663968 cites W2902409953 @default.
- W3133663968 cites W2911099261 @default.
- W3133663968 cites W2913333570 @default.
- W3133663968 cites W2915046299 @default.
- W3133663968 cites W2927286070 @default.
- W3133663968 cites W2941026101 @default.
- W3133663968 cites W2946431292 @default.
- W3133663968 cites W2953524141 @default.
- W3133663968 cites W2962777203 @default.
- W3133663968 cites W2962921175 @default.
- W3133663968 cites W2963037989 @default.
- W3133663968 cites W2963163009 @default.
- W3133663968 cites W2963351448 @default.
- W3133663968 cites W2963857746 @default.
- W3133663968 cites W2964241181 @default.
- W3133663968 cites W2964304707 @default.
- W3133663968 cites W2968405839 @default.
- W3133663968 cites W2970977083 @default.
- W3133663968 cites W2982083293 @default.
- W3133663968 cites W2991565663 @default.
- W3133663968 cites W2992240579 @default.
- W3133663968 cites W3010048034 @default.
- W3133663968 cites W3038835693 @default.
- W3133663968 cites W3042011474 @default.
- W3133663968 cites W3097389899 @default.
- W3133663968 cites W3106250896 @default.
- W3133663968 cites W3208645658 @default.
- W3133663968 doi "https://doi.org/10.1109/access.2021.3063681" @default.
- W3133663968 hasPublicationYear "2021" @default.
- W3133663968 type Work @default.
- W3133663968 sameAs 3133663968 @default.
- W3133663968 citedByCount "51" @default.
- W3133663968 countsByYear W31336639682021 @default.
- W3133663968 countsByYear W31336639682022 @default.
- W3133663968 countsByYear W31336639682023 @default.
- W3133663968 crossrefType "journal-article" @default.
- W3133663968 hasAuthorship W3133663968A5030914639 @default.
- W3133663968 hasAuthorship W3133663968A5065120677 @default.
- W3133663968 hasBestOaLocation W31336639681 @default.
- W3133663968 hasConcept C108583219 @default.
- W3133663968 hasConcept C121332964 @default.
- W3133663968 hasConcept C13280743 @default.
- W3133663968 hasConcept C153180895 @default.
- W3133663968 hasConcept C154945302 @default.
- W3133663968 hasConcept C163258240 @default.
- W3133663968 hasConcept C185798385 @default.
- W3133663968 hasConcept C205649164 @default.
- W3133663968 hasConcept C2775935494 @default.
- W3133663968 hasConcept C2776151529 @default.
- W3133663968 hasConcept C31972630 @default.
- W3133663968 hasConcept C41008148 @default.
- W3133663968 hasConcept C43214815 @default.
- W3133663968 hasConcept C54355233 @default.
- W3133663968 hasConcept C59519942 @default.
- W3133663968 hasConcept C62520636 @default.
- W3133663968 hasConcept C76155785 @default.
- W3133663968 hasConcept C79403827 @default.
- W3133663968 hasConcept C86803240 @default.
- W3133663968 hasConcept C90509273 @default.
- W3133663968 hasConcept C94915269 @default.
- W3133663968 hasConceptScore W3133663968C108583219 @default.
- W3133663968 hasConceptScore W3133663968C121332964 @default.
- W3133663968 hasConceptScore W3133663968C13280743 @default.