Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133670394> ?p ?o ?g. }
- W3133670394 endingPage "1207" @default.
- W3133670394 startingPage "1189" @default.
- W3133670394 abstract "Abstract The trace elemental and isotopic signatures in apatite can be modified during hydrothermal alteration. This study investigates the suitability of apatite as an indicator of the source, chemistry, and evolution of magma and hydrothermal fluids. In situ textural, elemental, and O-Sr-Nd isotope analyses were performed on apatite in thin sections, from fresh and propylitically altered pre- and synmineralized dioritic porphyries from the Black Mountain porphyry Cu deposit in the Philippines. All studied apatite crystals have similar subhedral to euhedral shapes and are homogeneous in the grayscale in backscattered electron images. In cathodoluminescence images, the apatite in fresh and altered rocks displays yellow to yellow-green and green to brown luminescence, respectively. Apatite in fresh rocks has a higher Cl and Mn content, and lower Fe, Mg, Sr, Pb, and calculated XOH-apatite, compared to apatite in altered rocks. The content of F, rare earth elements (REEs), Y, U, Th, and Zr, and the Sr-Nd isotope signatures of apatite from fresh and altered rocks are similar in all apatite grains (87Sr/86Sr = 0.7034–0.7042 vs. 0.7032–0.7043, εNd(t) = 5.3–8.0 vs. 5.1–8.4). The X-ray maps and elemental and oxygen isotope signatures across individual apatite crystals are typically homogeneous in apatite from both fresh and altered rocks. The distinct luminescence colors, coupled with distinct mobile element compositions (Cl, OH, Mn, Mg, Fe, Sr, Pb), indicate modification of primary magmatic apatite during interaction with hydrothermal fluids. The similarities in Sr isotope ratios (87Sr/86Sr = 0.7032–0.7043) but slight differences in O isotope signatures (δ18O = 6.0 ± 0.3‰ vs. 6.6 ± 0.3‰) in apatite from fresh and altered rocks are consistent with the magma and hydrothermal fluids having the same source and suggest significant phase separation in the hydrothermal fluids given that 18O preferentially fractionates into the residual liquid relative to 16O during phase separation. The similarity of immobile element (REE, Y, U, Th, and Zr) contents in both populations of apatite, consistency of textures and Nd isotope compositions, and absence of obvious dissolution-reprecipitation features all suggest that altered apatite retains some magmatic characteristics. The apatite in fresh rocks has oxygen isotope compositions similar to that of zircons from the same sample (δ18O = 5.9 ± 0.3‰), indicating little to no oxygen isotope fractionation between zircon and apatite and that apatite can be a good proxy for the oxygen isotope composition of the magma. Based on the Cl contents of the magmatic and replacement apatite, and assuming their equilibrium with high-temperature magma fluid and replacement hydrothermal fluid, respectively, the calculated Cl content of the early magmatic fluid and the later replacement fluid can be estimated to be 6.4 to 15.1 wt % and ~0.25 ± 0.03 wt %, respectively. This indicates a depletion of Cl from the early high-temperature fluid to the replacement fluid, consistent with phase separation. This study demonstrates that cathodoluminescence, elemental compositions (such as Cl, Mn, Mg, Fe, Sr, Pb) and Sr-O isotope signatures in apatite can be modified during hydrothermal alteration, whereas other components (REE, Y, U, Th, and Zr) and the Nd isotope composition are preserved. These features can be used to constrain the origin, chemistry, and evolution of the primary magma and ore-forming hydrothermal fluids." @default.
- W3133670394 created "2021-03-15" @default.
- W3133670394 creator A5021289896 @default.
- W3133670394 creator A5027508599 @default.
- W3133670394 creator A5035248686 @default.
- W3133670394 creator A5052648518 @default.
- W3133670394 creator A5076469799 @default.
- W3133670394 creator A5083847024 @default.
- W3133670394 date "2021-08-01" @default.
- W3133670394 modified "2023-10-11" @default.
- W3133670394 title "Apatite Texture, Composition, and O-Sr-Nd Isotope Signatures Record Magmatic and Hydrothermal Fluid Characteristics at the Black Mountain Porphyry Deposit, Philippines" @default.
- W3133670394 cites W1532396455 @default.
- W3133670394 cites W1548574557 @default.
- W3133670394 cites W1963978511 @default.
- W3133670394 cites W1964831515 @default.
- W3133670394 cites W1976264605 @default.
- W3133670394 cites W1991589759 @default.
- W3133670394 cites W1993983688 @default.
- W3133670394 cites W1996424686 @default.
- W3133670394 cites W1996715890 @default.
- W3133670394 cites W1996888014 @default.
- W3133670394 cites W2001792895 @default.
- W3133670394 cites W2003375872 @default.
- W3133670394 cites W2003480806 @default.
- W3133670394 cites W2004645897 @default.
- W3133670394 cites W2012411784 @default.
- W3133670394 cites W2016175712 @default.
- W3133670394 cites W2028048720 @default.
- W3133670394 cites W2028917031 @default.
- W3133670394 cites W2032152071 @default.
- W3133670394 cites W2035167073 @default.
- W3133670394 cites W2035297658 @default.
- W3133670394 cites W2035662349 @default.
- W3133670394 cites W2041219564 @default.
- W3133670394 cites W2053145749 @default.
- W3133670394 cites W2058751392 @default.
- W3133670394 cites W2060177679 @default.
- W3133670394 cites W2064201988 @default.
- W3133670394 cites W2068263426 @default.
- W3133670394 cites W2069499712 @default.
- W3133670394 cites W2070707331 @default.
- W3133670394 cites W2072674126 @default.
- W3133670394 cites W2075297859 @default.
- W3133670394 cites W2076179867 @default.
- W3133670394 cites W2077835903 @default.
- W3133670394 cites W2087894585 @default.
- W3133670394 cites W2088622090 @default.
- W3133670394 cites W2104337235 @default.
- W3133670394 cites W2111713335 @default.
- W3133670394 cites W2122578424 @default.
- W3133670394 cites W2130281340 @default.
- W3133670394 cites W2138522501 @default.
- W3133670394 cites W2138650374 @default.
- W3133670394 cites W2138907232 @default.
- W3133670394 cites W2139131101 @default.
- W3133670394 cites W2139280138 @default.
- W3133670394 cites W2159549048 @default.
- W3133670394 cites W2163402984 @default.
- W3133670394 cites W2164220172 @default.
- W3133670394 cites W2166567204 @default.
- W3133670394 cites W2166916464 @default.
- W3133670394 cites W2169666986 @default.
- W3133670394 cites W2169786088 @default.
- W3133670394 cites W2180414684 @default.
- W3133670394 cites W2256095938 @default.
- W3133670394 cites W2263035004 @default.
- W3133670394 cites W2308439799 @default.
- W3133670394 cites W2313591327 @default.
- W3133670394 cites W2329313478 @default.
- W3133670394 cites W2329691596 @default.
- W3133670394 cites W2346665872 @default.
- W3133670394 cites W2403584518 @default.
- W3133670394 cites W2413094107 @default.
- W3133670394 cites W2425007227 @default.
- W3133670394 cites W2465516530 @default.
- W3133670394 cites W2510075163 @default.
- W3133670394 cites W2544742197 @default.
- W3133670394 cites W2548352797 @default.
- W3133670394 cites W2558893518 @default.
- W3133670394 cites W2561115763 @default.
- W3133670394 cites W2592492169 @default.
- W3133670394 cites W2593961958 @default.
- W3133670394 cites W2594418733 @default.
- W3133670394 cites W2597501463 @default.
- W3133670394 cites W2788130917 @default.
- W3133670394 cites W2804864262 @default.
- W3133670394 cites W2892314810 @default.
- W3133670394 cites W2905242520 @default.
- W3133670394 cites W2913005539 @default.
- W3133670394 cites W2914140711 @default.
- W3133670394 cites W2918414926 @default.
- W3133670394 cites W2920452508 @default.
- W3133670394 cites W2939150667 @default.
- W3133670394 cites W2985707129 @default.
- W3133670394 cites W2986496965 @default.
- W3133670394 cites W2995482781 @default.
- W3133670394 cites W2995651560 @default.
- W3133670394 cites W2998777717 @default.