Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133676303> ?p ?o ?g. }
- W3133676303 abstract "Deep Learning based methods have emerged as the indisputable leaders for virtually all image restoration tasks. Especially in the domain of microscopy images, various content-aware image restoration (CARE) approaches are now used to improve the interpretability of acquired data. Naturally, there are limitations to what can be restored in corrupted images, and like for all inverse problems, many potential solutions exist, and one of them must be chosen. Here, we propose DivNoising, a denoising approach based on fully convolutional variational autoencoders (VAEs), overcoming the problem of having to choose a single solution by predicting a whole distribution of denoised images. First we introduce a principled way of formulating the unsupervised denoising problem within the VAE framework by explicitly incorporating imaging noise models into the decoder. Our approach is fully unsupervised, only requiring noisy images and a suitable description of the imaging noise distribution. We show that such a noise model can either be measured, bootstrapped from noisy data, or co-learned during training. If desired, consensus predictions can be inferred from a set of DivNoising predictions, leading to competitive results with other unsupervised methods and, on occasion, even with the supervised state-of-the-art. DivNoising samples from the posterior enable a plethora of useful applications. We are (i) showing denoising results for 13 datasets, (ii) discussing how optical character recognition (OCR) applications can benefit from diverse predictions, and are (iii) demonstrating how instance cell segmentation improves when using diverse DivNoising predictions." @default.
- W3133676303 created "2021-03-15" @default.
- W3133676303 creator A5010649507 @default.
- W3133676303 creator A5045834690 @default.
- W3133676303 creator A5073866871 @default.
- W3133676303 date "2020-06-10" @default.
- W3133676303 modified "2023-09-27" @default.
- W3133676303 title "Fully Unsupervised Diversity Denoising with Convolutional Variational Autoencoders" @default.
- W3133676303 cites W1861492603 @default.
- W3133676303 cites W1878940107 @default.
- W3133676303 cites W1909320841 @default.
- W3133676303 cites W1959608418 @default.
- W3133676303 cites W1998419211 @default.
- W3133676303 cites W2022686119 @default.
- W3133676303 cites W2025768430 @default.
- W3133676303 cites W2056370875 @default.
- W3133676303 cites W2097073572 @default.
- W3133676303 cites W2100846049 @default.
- W3133676303 cites W2108855378 @default.
- W3133676303 cites W2110701855 @default.
- W3133676303 cites W2112796928 @default.
- W3133676303 cites W2131686571 @default.
- W3133676303 cites W2135046866 @default.
- W3133676303 cites W2145094598 @default.
- W3133676303 cites W2167279371 @default.
- W3133676303 cites W2210838531 @default.
- W3133676303 cites W2467604901 @default.
- W3133676303 cites W2508457857 @default.
- W3133676303 cites W2613155248 @default.
- W3133676303 cites W2745750801 @default.
- W3133676303 cites W2753738274 @default.
- W3133676303 cites W2801396275 @default.
- W3133676303 cites W2884581909 @default.
- W3133676303 cites W2902857081 @default.
- W3133676303 cites W2902986194 @default.
- W3133676303 cites W2912662300 @default.
- W3133676303 cites W2947592434 @default.
- W3133676303 cites W2949391996 @default.
- W3133676303 cites W2949725501 @default.
- W3133676303 cites W2950501364 @default.
- W3133676303 cites W2958578978 @default.
- W3133676303 cites W2963238274 @default.
- W3133676303 cites W2963435596 @default.
- W3133676303 cites W2963501406 @default.
- W3133676303 cites W2963632741 @default.
- W3133676303 cites W2964013315 @default.
- W3133676303 cites W2964046669 @default.
- W3133676303 cites W2964059111 @default.
- W3133676303 cites W2964121744 @default.
- W3133676303 cites W2964204553 @default.
- W3133676303 cites W2965457701 @default.
- W3133676303 cites W2971082124 @default.
- W3133676303 cites W2979410457 @default.
- W3133676303 cites W2981552805 @default.
- W3133676303 cites W2981581240 @default.
- W3133676303 cites W2990516637 @default.
- W3133676303 cites W2997563872 @default.
- W3133676303 cites W2998453661 @default.
- W3133676303 cites W3007757852 @default.
- W3133676303 cites W3011587062 @default.
- W3133676303 cites W3021589305 @default.
- W3133676303 cites W3027834173 @default.
- W3133676303 cites W3033413464 @default.
- W3133676303 cites W3035542568 @default.
- W3133676303 cites W3035623224 @default.
- W3133676303 cites W3103543904 @default.
- W3133676303 cites W3119769574 @default.
- W3133676303 cites W3127345355 @default.
- W3133676303 hasPublicationYear "2020" @default.
- W3133676303 type Work @default.
- W3133676303 sameAs 3133676303 @default.
- W3133676303 citedByCount "5" @default.
- W3133676303 countsByYear W31336763032020 @default.
- W3133676303 countsByYear W31336763032021 @default.
- W3133676303 crossrefType "posted-content" @default.
- W3133676303 hasAuthorship W3133676303A5010649507 @default.
- W3133676303 hasAuthorship W3133676303A5045834690 @default.
- W3133676303 hasAuthorship W3133676303A5073866871 @default.
- W3133676303 hasConcept C115961682 @default.
- W3133676303 hasConcept C119857082 @default.
- W3133676303 hasConcept C153180895 @default.
- W3133676303 hasConcept C154945302 @default.
- W3133676303 hasConcept C163294075 @default.
- W3133676303 hasConcept C2781067378 @default.
- W3133676303 hasConcept C41008148 @default.
- W3133676303 hasConcept C8038995 @default.
- W3133676303 hasConcept C81363708 @default.
- W3133676303 hasConcept C89600930 @default.
- W3133676303 hasConcept C99498987 @default.
- W3133676303 hasConceptScore W3133676303C115961682 @default.
- W3133676303 hasConceptScore W3133676303C119857082 @default.
- W3133676303 hasConceptScore W3133676303C153180895 @default.
- W3133676303 hasConceptScore W3133676303C154945302 @default.
- W3133676303 hasConceptScore W3133676303C163294075 @default.
- W3133676303 hasConceptScore W3133676303C2781067378 @default.
- W3133676303 hasConceptScore W3133676303C41008148 @default.
- W3133676303 hasConceptScore W3133676303C8038995 @default.
- W3133676303 hasConceptScore W3133676303C81363708 @default.
- W3133676303 hasConceptScore W3133676303C89600930 @default.
- W3133676303 hasConceptScore W3133676303C99498987 @default.