Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133676333> ?p ?o ?g. }
- W3133676333 endingPage "103265" @default.
- W3133676333 startingPage "103265" @default.
- W3133676333 abstract "Deformation of high-speed railway subgrades, due to low temperatures, is a common phenomenon in cold regions. In winter, the uneven frost heave of subgrade soil would cause hazards to train safety. It is therefore necessary to estimate and predict the subgrade properties. Since the variation of frost heave is non-stationary over time, traditional time series analyses have difficulties where complex physical parameters are not available. In this study, we introduce two models based on deep learning technology to predict frost heave deformation of railway subgrade. These include the artificial neural network (ANN) and long-short term memory (LSTM) network, where we used data of four sections to build the ANN and LSTM. The experimental results of the LSTM model provided lower MAE and RMSE with different datasets. The prediction of three deep deformations for the K1959 + 580 and K1962 + 618 section with slight fluctuation in the data and the performance of the ANN with MAE is 0.0090‐–0.0660 and 0.0069‐–0.0201 of the LSTM models. In the K2005 + 948 and K2029 + 829 section, ANN and LSTM estimated the frost heave deformation with MAE of 0.0061‐–0.0681 and 0.0054‐–0.0309 for a more intense fluctuation on the deformation. Our findings suggest that the network topology of the LSTM model with 12 hidden neurons performs best with fewer parameters, with an average RMSE of 0.0210 mm and MAE of 0.0138 for all the training samples, indicating that the deep learning model has high precision in this scenario." @default.
- W3133676333 created "2021-03-15" @default.
- W3133676333 creator A5008889049 @default.
- W3133676333 creator A5029160360 @default.
- W3133676333 creator A5029883120 @default.
- W3133676333 creator A5038522660 @default.
- W3133676333 creator A5048379858 @default.
- W3133676333 creator A5059428895 @default.
- W3133676333 creator A5060008686 @default.
- W3133676333 creator A5085888719 @default.
- W3133676333 date "2021-05-01" @default.
- W3133676333 modified "2023-10-17" @default.
- W3133676333 title "A deep learning forecasting method for frost heave deformation of high-speed railway subgrade" @default.
- W3133676333 cites W1034728544 @default.
- W3133676333 cites W1990185102 @default.
- W3133676333 cites W1991866519 @default.
- W3133676333 cites W1995341919 @default.
- W3133676333 cites W1995370775 @default.
- W3133676333 cites W2008337587 @default.
- W3133676333 cites W2016210396 @default.
- W3133676333 cites W2055054195 @default.
- W3133676333 cites W2064675550 @default.
- W3133676333 cites W2074129260 @default.
- W3133676333 cites W2077656533 @default.
- W3133676333 cites W2130948579 @default.
- W3133676333 cites W2201008065 @default.
- W3133676333 cites W2504266609 @default.
- W3133676333 cites W2532261565 @default.
- W3133676333 cites W2618691154 @default.
- W3133676333 cites W2767272949 @default.
- W3133676333 cites W2800808369 @default.
- W3133676333 cites W2803125683 @default.
- W3133676333 cites W2803324240 @default.
- W3133676333 cites W2898924913 @default.
- W3133676333 cites W2910183581 @default.
- W3133676333 cites W2942054482 @default.
- W3133676333 cites W2942406509 @default.
- W3133676333 cites W3005289256 @default.
- W3133676333 cites W3042316884 @default.
- W3133676333 doi "https://doi.org/10.1016/j.coldregions.2021.103265" @default.
- W3133676333 hasPublicationYear "2021" @default.
- W3133676333 type Work @default.
- W3133676333 sameAs 3133676333 @default.
- W3133676333 citedByCount "13" @default.
- W3133676333 countsByYear W31336763332021 @default.
- W3133676333 countsByYear W31336763332022 @default.
- W3133676333 countsByYear W31336763332023 @default.
- W3133676333 crossrefType "journal-article" @default.
- W3133676333 hasAuthorship W3133676333A5008889049 @default.
- W3133676333 hasAuthorship W3133676333A5029160360 @default.
- W3133676333 hasAuthorship W3133676333A5029883120 @default.
- W3133676333 hasAuthorship W3133676333A5038522660 @default.
- W3133676333 hasAuthorship W3133676333A5048379858 @default.
- W3133676333 hasAuthorship W3133676333A5059428895 @default.
- W3133676333 hasAuthorship W3133676333A5060008686 @default.
- W3133676333 hasAuthorship W3133676333A5085888719 @default.
- W3133676333 hasConcept C105795698 @default.
- W3133676333 hasConcept C108583219 @default.
- W3133676333 hasConcept C111368507 @default.
- W3133676333 hasConcept C114793014 @default.
- W3133676333 hasConcept C127313418 @default.
- W3133676333 hasConcept C127413603 @default.
- W3133676333 hasConcept C139945424 @default.
- W3133676333 hasConcept C154945302 @default.
- W3133676333 hasConcept C182377489 @default.
- W3133676333 hasConcept C187320778 @default.
- W3133676333 hasConcept C204366326 @default.
- W3133676333 hasConcept C33923547 @default.
- W3133676333 hasConcept C39432304 @default.
- W3133676333 hasConcept C41008148 @default.
- W3133676333 hasConcept C4988496 @default.
- W3133676333 hasConcept C50644808 @default.
- W3133676333 hasConcept C66938386 @default.
- W3133676333 hasConceptScore W3133676333C105795698 @default.
- W3133676333 hasConceptScore W3133676333C108583219 @default.
- W3133676333 hasConceptScore W3133676333C111368507 @default.
- W3133676333 hasConceptScore W3133676333C114793014 @default.
- W3133676333 hasConceptScore W3133676333C127313418 @default.
- W3133676333 hasConceptScore W3133676333C127413603 @default.
- W3133676333 hasConceptScore W3133676333C139945424 @default.
- W3133676333 hasConceptScore W3133676333C154945302 @default.
- W3133676333 hasConceptScore W3133676333C182377489 @default.
- W3133676333 hasConceptScore W3133676333C187320778 @default.
- W3133676333 hasConceptScore W3133676333C204366326 @default.
- W3133676333 hasConceptScore W3133676333C33923547 @default.
- W3133676333 hasConceptScore W3133676333C39432304 @default.
- W3133676333 hasConceptScore W3133676333C41008148 @default.
- W3133676333 hasConceptScore W3133676333C4988496 @default.
- W3133676333 hasConceptScore W3133676333C50644808 @default.
- W3133676333 hasConceptScore W3133676333C66938386 @default.
- W3133676333 hasFunder F4320321001 @default.
- W3133676333 hasFunder F4320326833 @default.
- W3133676333 hasFunder F4320338154 @default.
- W3133676333 hasLocation W31336763331 @default.
- W3133676333 hasOpenAccess W3133676333 @default.
- W3133676333 hasPrimaryLocation W31336763331 @default.
- W3133676333 hasRelatedWork W190555568 @default.
- W3133676333 hasRelatedWork W1969270046 @default.