Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133679620> ?p ?o ?g. }
- W3133679620 endingPage "524" @default.
- W3133679620 startingPage "511" @default.
- W3133679620 abstract "The extreme temperature induced by fire and hot toxic smokes in tunnels threaten the trapped personnel and firefighters. To alleviate the potential casualties, fast while reasonable decisions should be made for rescuing, based on the timely prediction of fire development in tunnels. This paper targets to achieve a real-time prediction (within 1 s) of the spatial-temporal temperature distribution inside the numerical tunnel model by using artificial intelligence (AI) methods. A CFD database of 100 simulated tunnel fire scenarios under various fire location, fire size, and ventilation condition is established. The proposed AI model combines a Long Short-term Memory (LSTM) model and a Transpose Convolution Neural Network (TCNN). The real-time ceiling temperature profile and thousands of temperature-field images are used as the training input and output. Results show that the predicted temperature field 60 s in advance achieves a high accuracy of around 97%. Also, the AI model can quickly identify the critical temperature field for safe evacuation (i.e., a critical event) and guide emergency responses and firefighting activities. This study demonstrates the promising prospects of AI-based fire forecasts and smart firefighting in tunnel spaces." @default.
- W3133679620 created "2021-03-15" @default.
- W3133679620 creator A5012510366 @default.
- W3133679620 creator A5034098025 @default.
- W3133679620 creator A5075429650 @default.
- W3133679620 creator A5079826070 @default.
- W3133679620 creator A5080760430 @default.
- W3133679620 date "2021-03-09" @default.
- W3133679620 modified "2023-10-10" @default.
- W3133679620 title "A real-time forecast of tunnel fire based on numerical database and artificial intelligence" @default.
- W3133679620 cites W1528387358 @default.
- W3133679620 cites W1967350296 @default.
- W3133679620 cites W1983806408 @default.
- W3133679620 cites W2005401765 @default.
- W3133679620 cites W2006956748 @default.
- W3133679620 cites W2020392213 @default.
- W3133679620 cites W2023581224 @default.
- W3133679620 cites W2036521959 @default.
- W3133679620 cites W2039089041 @default.
- W3133679620 cites W2057642726 @default.
- W3133679620 cites W2064675550 @default.
- W3133679620 cites W2066402186 @default.
- W3133679620 cites W2070054073 @default.
- W3133679620 cites W2072106824 @default.
- W3133679620 cites W2072461903 @default.
- W3133679620 cites W2107878631 @default.
- W3133679620 cites W2110865012 @default.
- W3133679620 cites W2112364454 @default.
- W3133679620 cites W2130269771 @default.
- W3133679620 cites W2149573345 @default.
- W3133679620 cites W2160366044 @default.
- W3133679620 cites W2172246201 @default.
- W3133679620 cites W2194775991 @default.
- W3133679620 cites W2228525019 @default.
- W3133679620 cites W2345613477 @default.
- W3133679620 cites W253751346 @default.
- W3133679620 cites W2755756378 @default.
- W3133679620 cites W2763238567 @default.
- W3133679620 cites W2767054430 @default.
- W3133679620 cites W2799675047 @default.
- W3133679620 cites W2807698901 @default.
- W3133679620 cites W2889105334 @default.
- W3133679620 cites W2898767449 @default.
- W3133679620 cites W2899405916 @default.
- W3133679620 cites W2913649977 @default.
- W3133679620 cites W2922429109 @default.
- W3133679620 cites W2925105068 @default.
- W3133679620 cites W2964020725 @default.
- W3133679620 cites W2979526390 @default.
- W3133679620 cites W2982747530 @default.
- W3133679620 cites W2998269827 @default.
- W3133679620 cites W2999837629 @default.
- W3133679620 cites W3008252634 @default.
- W3133679620 cites W3008420692 @default.
- W3133679620 cites W3022122362 @default.
- W3133679620 cites W3037745614 @default.
- W3133679620 cites W3098773154 @default.
- W3133679620 cites W3106966339 @default.
- W3133679620 cites W328680480 @default.
- W3133679620 cites W578989193 @default.
- W3133679620 doi "https://doi.org/10.1007/s12273-021-0775-x" @default.
- W3133679620 hasPublicationYear "2021" @default.
- W3133679620 type Work @default.
- W3133679620 sameAs 3133679620 @default.
- W3133679620 citedByCount "26" @default.
- W3133679620 countsByYear W31336796202021 @default.
- W3133679620 countsByYear W31336796202022 @default.
- W3133679620 countsByYear W31336796202023 @default.
- W3133679620 crossrefType "journal-article" @default.
- W3133679620 hasAuthorship W3133679620A5012510366 @default.
- W3133679620 hasAuthorship W3133679620A5034098025 @default.
- W3133679620 hasAuthorship W3133679620A5075429650 @default.
- W3133679620 hasAuthorship W3133679620A5079826070 @default.
- W3133679620 hasAuthorship W3133679620A5080760430 @default.
- W3133679620 hasBestOaLocation W31336796202 @default.
- W3133679620 hasConcept C127413603 @default.
- W3133679620 hasConcept C146978453 @default.
- W3133679620 hasConcept C153294291 @default.
- W3133679620 hasConcept C154945302 @default.
- W3133679620 hasConcept C1633027 @default.
- W3133679620 hasConcept C199104240 @default.
- W3133679620 hasConcept C202444582 @default.
- W3133679620 hasConcept C205649164 @default.
- W3133679620 hasConcept C2777489069 @default.
- W3133679620 hasConcept C33923547 @default.
- W3133679620 hasConcept C41008148 @default.
- W3133679620 hasConcept C44154836 @default.
- W3133679620 hasConcept C50644808 @default.
- W3133679620 hasConcept C557531904 @default.
- W3133679620 hasConcept C58640448 @default.
- W3133679620 hasConcept C66938386 @default.
- W3133679620 hasConcept C9652623 @default.
- W3133679620 hasConceptScore W3133679620C127413603 @default.
- W3133679620 hasConceptScore W3133679620C146978453 @default.
- W3133679620 hasConceptScore W3133679620C153294291 @default.
- W3133679620 hasConceptScore W3133679620C154945302 @default.
- W3133679620 hasConceptScore W3133679620C1633027 @default.
- W3133679620 hasConceptScore W3133679620C199104240 @default.