Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133692938> ?p ?o ?g. }
- W3133692938 endingPage "116" @default.
- W3133692938 startingPage "108" @default.
- W3133692938 abstract "Accurate determination of low-density lipoprotein cholesterol (LDL) is important for coronary heart disease risk assessment and atherosclerosis. Apart from direct determination of LDL values, models (or equations) are used. A more recent approach is the use of machine learning (ML) algorithms. ML algorithms were used for LDL determination (regression) from cholesterol, HDL and triglycerides. The methods used were multivariate Linear Regression (LR), Support Vector Machines (SVM), Extreme Gradient Boosting (XGB) and Deep Neural Networks (DNN), in both larger and smaller data sets. Also, LDL values were classified according to both NCEP III and European Society of Cardiology guidelines. The performance of regression was assessed by the Standard Error of the Estimate. ML methods performed better than established equations (Friedewald and Martin). The performance all ML methods was comparable for large data sets and was affected by the divergence of the train and test data sets, as measured by the Jensen-Shannon divergence. Classification accuracy was not satisfactory for any model. Direct determination of LDL is the most preferred route. When not available, ML methods can be a good substitute. Not only deep neural networks but other, less computationally expensive methods can work as well as deep learning." @default.
- W3133692938 created "2021-03-15" @default.
- W3133692938 creator A5007956927 @default.
- W3133692938 creator A5026787221 @default.
- W3133692938 creator A5035050571 @default.
- W3133692938 creator A5039777905 @default.
- W3133692938 creator A5060606116 @default.
- W3133692938 creator A5062697384 @default.
- W3133692938 date "2021-06-01" @default.
- W3133692938 modified "2023-09-25" @default.
- W3133692938 title "Estimation of low-density lipoprotein cholesterol by machine learning methods" @default.
- W3133692938 cites W1962235983 @default.
- W3133692938 cites W1989589017 @default.
- W3133692938 cites W2025799289 @default.
- W3133692938 cites W2026126928 @default.
- W3133692938 cites W2035400847 @default.
- W3133692938 cites W2052341239 @default.
- W3133692938 cites W2063703901 @default.
- W3133692938 cites W2084341220 @default.
- W3133692938 cites W2092052451 @default.
- W3133692938 cites W2116404316 @default.
- W3133692938 cites W2129018774 @default.
- W3133692938 cites W2130132335 @default.
- W3133692938 cites W2132481658 @default.
- W3133692938 cites W2332435054 @default.
- W3133692938 cites W2508633140 @default.
- W3133692938 cites W2508729642 @default.
- W3133692938 cites W2787894218 @default.
- W3133692938 cites W2800713945 @default.
- W3133692938 cites W2803832152 @default.
- W3133692938 cites W2809624198 @default.
- W3133692938 cites W2898342053 @default.
- W3133692938 cites W2955487159 @default.
- W3133692938 cites W2981046483 @default.
- W3133692938 cites W3091521468 @default.
- W3133692938 cites W4213113494 @default.
- W3133692938 cites W4230870013 @default.
- W3133692938 cites W4239510810 @default.
- W3133692938 doi "https://doi.org/10.1016/j.cca.2021.02.020" @default.
- W3133692938 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33667481" @default.
- W3133692938 hasPublicationYear "2021" @default.
- W3133692938 type Work @default.
- W3133692938 sameAs 3133692938 @default.
- W3133692938 citedByCount "10" @default.
- W3133692938 countsByYear W31336929382021 @default.
- W3133692938 countsByYear W31336929382022 @default.
- W3133692938 countsByYear W31336929382023 @default.
- W3133692938 crossrefType "journal-article" @default.
- W3133692938 hasAuthorship W3133692938A5007956927 @default.
- W3133692938 hasAuthorship W3133692938A5026787221 @default.
- W3133692938 hasAuthorship W3133692938A5035050571 @default.
- W3133692938 hasAuthorship W3133692938A5039777905 @default.
- W3133692938 hasAuthorship W3133692938A5060606116 @default.
- W3133692938 hasAuthorship W3133692938A5062697384 @default.
- W3133692938 hasConcept C105795698 @default.
- W3133692938 hasConcept C119857082 @default.
- W3133692938 hasConcept C12267149 @default.
- W3133692938 hasConcept C126322002 @default.
- W3133692938 hasConcept C138885662 @default.
- W3133692938 hasConcept C152877465 @default.
- W3133692938 hasConcept C154945302 @default.
- W3133692938 hasConcept C161584116 @default.
- W3133692938 hasConcept C169258074 @default.
- W3133692938 hasConcept C207390915 @default.
- W3133692938 hasConcept C2778163477 @default.
- W3133692938 hasConcept C2780150128 @default.
- W3133692938 hasConcept C33923547 @default.
- W3133692938 hasConcept C41008148 @default.
- W3133692938 hasConcept C41895202 @default.
- W3133692938 hasConcept C46686674 @default.
- W3133692938 hasConcept C48921125 @default.
- W3133692938 hasConcept C50644808 @default.
- W3133692938 hasConcept C64946054 @default.
- W3133692938 hasConcept C70153297 @default.
- W3133692938 hasConcept C71924100 @default.
- W3133692938 hasConcept C83546350 @default.
- W3133692938 hasConceptScore W3133692938C105795698 @default.
- W3133692938 hasConceptScore W3133692938C119857082 @default.
- W3133692938 hasConceptScore W3133692938C12267149 @default.
- W3133692938 hasConceptScore W3133692938C126322002 @default.
- W3133692938 hasConceptScore W3133692938C138885662 @default.
- W3133692938 hasConceptScore W3133692938C152877465 @default.
- W3133692938 hasConceptScore W3133692938C154945302 @default.
- W3133692938 hasConceptScore W3133692938C161584116 @default.
- W3133692938 hasConceptScore W3133692938C169258074 @default.
- W3133692938 hasConceptScore W3133692938C207390915 @default.
- W3133692938 hasConceptScore W3133692938C2778163477 @default.
- W3133692938 hasConceptScore W3133692938C2780150128 @default.
- W3133692938 hasConceptScore W3133692938C33923547 @default.
- W3133692938 hasConceptScore W3133692938C41008148 @default.
- W3133692938 hasConceptScore W3133692938C41895202 @default.
- W3133692938 hasConceptScore W3133692938C46686674 @default.
- W3133692938 hasConceptScore W3133692938C48921125 @default.
- W3133692938 hasConceptScore W3133692938C50644808 @default.
- W3133692938 hasConceptScore W3133692938C64946054 @default.
- W3133692938 hasConceptScore W3133692938C70153297 @default.
- W3133692938 hasConceptScore W3133692938C71924100 @default.
- W3133692938 hasConceptScore W3133692938C83546350 @default.