Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133714637> ?p ?o ?g. }
- W3133714637 endingPage "1106" @default.
- W3133714637 startingPage "1094" @default.
- W3133714637 abstract "This article introduces structured machine learning regressions for high-dimensional time series data potentially sampled at different frequencies. The sparse-group LASSO estimator can take advantage of such time series data structures and outperforms the unstructured LASSO. We establish oracle inequalities for the sparse-group LASSO estimator within a framework that allows for the mixing processes and recognizes that the financial and the macroeconomic data may have heavier than exponential tails. An empirical application to nowcasting US GDP growth indicates that the estimator performs favorably compared to other alternatives and that text data can be a useful addition to more traditional numerical data. Our methodology is implemented in the R package midasml, available from CRAN." @default.
- W3133714637 created "2021-03-15" @default.
- W3133714637 creator A5008717461 @default.
- W3133714637 creator A5051448393 @default.
- W3133714637 creator A5068715764 @default.
- W3133714637 date "2021-04-21" @default.
- W3133714637 modified "2023-09-30" @default.
- W3133714637 title "Machine Learning Time Series Regressions With an Application to Nowcasting" @default.
- W3133714637 cites W1599067237 @default.
- W3133714637 cites W1987371344 @default.
- W3133714637 cites W2005036722 @default.
- W3133714637 cites W2010338547 @default.
- W3133714637 cites W2018825747 @default.
- W3133714637 cites W2053752134 @default.
- W3133714637 cites W2056075622 @default.
- W3133714637 cites W2059787748 @default.
- W3133714637 cites W2068019718 @default.
- W3133714637 cites W2069262403 @default.
- W3133714637 cites W2116581043 @default.
- W3133714637 cites W2134536175 @default.
- W3133714637 cites W2135046866 @default.
- W3133714637 cites W2138019504 @default.
- W3133714637 cites W2155963925 @default.
- W3133714637 cites W2157448961 @default.
- W3133714637 cites W2163162137 @default.
- W3133714637 cites W2171069895 @default.
- W3133714637 cites W2218268564 @default.
- W3133714637 cites W2274029167 @default.
- W3133714637 cites W2337441499 @default.
- W3133714637 cites W2368500460 @default.
- W3133714637 cites W2461502110 @default.
- W3133714637 cites W2529031163 @default.
- W3133714637 cites W2537345220 @default.
- W3133714637 cites W2569456096 @default.
- W3133714637 cites W2621092453 @default.
- W3133714637 cites W2754023684 @default.
- W3133714637 cites W2768107414 @default.
- W3133714637 cites W2862010437 @default.
- W3133714637 cites W2920903533 @default.
- W3133714637 cites W2922548130 @default.
- W3133714637 cites W2944159786 @default.
- W3133714637 cites W2950190315 @default.
- W3133714637 cites W2971296170 @default.
- W3133714637 cites W3022446978 @default.
- W3133714637 cites W3028794438 @default.
- W3133714637 cites W3121183260 @default.
- W3133714637 cites W3122251671 @default.
- W3133714637 cites W3125263362 @default.
- W3133714637 cites W4254913624 @default.
- W3133714637 cites W4291327732 @default.
- W3133714637 cites W49186475 @default.
- W3133714637 doi "https://doi.org/10.1080/07350015.2021.1899933" @default.
- W3133714637 hasPublicationYear "2021" @default.
- W3133714637 type Work @default.
- W3133714637 sameAs 3133714637 @default.
- W3133714637 citedByCount "25" @default.
- W3133714637 countsByYear W31337146372020 @default.
- W3133714637 countsByYear W31337146372021 @default.
- W3133714637 countsByYear W31337146372022 @default.
- W3133714637 countsByYear W31337146372023 @default.
- W3133714637 crossrefType "journal-article" @default.
- W3133714637 hasAuthorship W3133714637A5008717461 @default.
- W3133714637 hasAuthorship W3133714637A5051448393 @default.
- W3133714637 hasAuthorship W3133714637A5068715764 @default.
- W3133714637 hasBestOaLocation W31337146372 @default.
- W3133714637 hasConcept C105795698 @default.
- W3133714637 hasConcept C11413529 @default.
- W3133714637 hasConcept C115903868 @default.
- W3133714637 hasConcept C119857082 @default.
- W3133714637 hasConcept C124101348 @default.
- W3133714637 hasConcept C136764020 @default.
- W3133714637 hasConcept C143724316 @default.
- W3133714637 hasConcept C149782125 @default.
- W3133714637 hasConcept C151406439 @default.
- W3133714637 hasConcept C151730666 @default.
- W3133714637 hasConcept C153294291 @default.
- W3133714637 hasConcept C154945302 @default.
- W3133714637 hasConcept C185429906 @default.
- W3133714637 hasConcept C205649164 @default.
- W3133714637 hasConcept C2781013037 @default.
- W3133714637 hasConcept C33923547 @default.
- W3133714637 hasConcept C37616216 @default.
- W3133714637 hasConcept C41008148 @default.
- W3133714637 hasConcept C55166926 @default.
- W3133714637 hasConcept C86803240 @default.
- W3133714637 hasConceptScore W3133714637C105795698 @default.
- W3133714637 hasConceptScore W3133714637C11413529 @default.
- W3133714637 hasConceptScore W3133714637C115903868 @default.
- W3133714637 hasConceptScore W3133714637C119857082 @default.
- W3133714637 hasConceptScore W3133714637C124101348 @default.
- W3133714637 hasConceptScore W3133714637C136764020 @default.
- W3133714637 hasConceptScore W3133714637C143724316 @default.
- W3133714637 hasConceptScore W3133714637C149782125 @default.
- W3133714637 hasConceptScore W3133714637C151406439 @default.
- W3133714637 hasConceptScore W3133714637C151730666 @default.
- W3133714637 hasConceptScore W3133714637C153294291 @default.
- W3133714637 hasConceptScore W3133714637C154945302 @default.
- W3133714637 hasConceptScore W3133714637C185429906 @default.