Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133789260> ?p ?o ?g. }
- W3133789260 abstract "Abstract Achieving defect-free parts is traditionally challenging in laser powder bed fusion (LPBF). The mechanical properties of additively manufactured parts are highly affected by their density; as such, research in defect detection and pore prediction has gained significant interest. The process parameters, the powder characteristics, and the process environment conditions play an important role in defect occurrence. Moreover, the laser scan path affects density, especially at scan path discontinuities. In this work, the complex interaction between the process parameters and the scan path on the occurrence of subsurface pores is investigated. In the data preparation step, a synthetic data set is generated to model the melt pool morphology along the scan path. A secondary data set containing the pore space of the resulting parts is obtained via X-ray computed tomography (CT) and is registered with the synthetic data set. Machine learning models, namely, a Conditional Variational AutoEncoder (CVAE) and a Convolutional Neural Network (CNN), are then trained based on the input features to predict pore occurrence. The performance evaluation of both CNN and CVAE models on synthetic data indicates that the scan path and process parameters can be utilized in predicting pore locations. Quantitative results show that employing offline CT images a priori in training the CVAE, without the need to have CT information in the test phase, leads the CVAE model to superior performance over the CNN." @default.
- W3133789260 created "2021-03-15" @default.
- W3133789260 creator A5002665746 @default.
- W3133789260 creator A5013913630 @default.
- W3133789260 creator A5020701012 @default.
- W3133789260 creator A5022626645 @default.
- W3133789260 creator A5040965924 @default.
- W3133789260 creator A5078015739 @default.
- W3133789260 creator A5090999256 @default.
- W3133789260 date "2021-03-26" @default.
- W3133789260 modified "2023-10-16" @default.
- W3133789260 title "Toward Sub-Surface Pore Prediction Capabilities for Laser Powder Bed Fusion Using Data Science" @default.
- W3133789260 cites W1200930000 @default.
- W3133789260 cites W1990077866 @default.
- W3133789260 cites W1990551607 @default.
- W3133789260 cites W2020102247 @default.
- W3133789260 cites W2022508996 @default.
- W3133789260 cites W2043225275 @default.
- W3133789260 cites W2090221468 @default.
- W3133789260 cites W2098459033 @default.
- W3133789260 cites W2133059825 @default.
- W3133789260 cites W2250894080 @default.
- W3133789260 cites W2279780730 @default.
- W3133789260 cites W2408619629 @default.
- W3133789260 cites W2411571856 @default.
- W3133789260 cites W2412321691 @default.
- W3133789260 cites W2567224341 @default.
- W3133789260 cites W2591438797 @default.
- W3133789260 cites W2618679775 @default.
- W3133789260 cites W2737237802 @default.
- W3133789260 cites W2741574707 @default.
- W3133789260 cites W2767645666 @default.
- W3133789260 cites W2788826596 @default.
- W3133789260 cites W2789411814 @default.
- W3133789260 cites W2789854715 @default.
- W3133789260 cites W2790506024 @default.
- W3133789260 cites W2797662745 @default.
- W3133789260 cites W2799328997 @default.
- W3133789260 cites W2803666696 @default.
- W3133789260 cites W2891043551 @default.
- W3133789260 cites W2893266492 @default.
- W3133789260 cites W2897772195 @default.
- W3133789260 cites W2902776370 @default.
- W3133789260 cites W2915627018 @default.
- W3133789260 cites W2942426505 @default.
- W3133789260 cites W2942539847 @default.
- W3133789260 cites W2948978827 @default.
- W3133789260 cites W2950932307 @default.
- W3133789260 cites W2952082814 @default.
- W3133789260 cites W2954158318 @default.
- W3133789260 cites W2966005396 @default.
- W3133789260 cites W2966213627 @default.
- W3133789260 cites W2988091809 @default.
- W3133789260 cites W3122321025 @default.
- W3133789260 cites W4232623737 @default.
- W3133789260 cites W4239210762 @default.
- W3133789260 doi "https://doi.org/10.1115/1.4050461" @default.
- W3133789260 hasPublicationYear "2021" @default.
- W3133789260 type Work @default.
- W3133789260 sameAs 3133789260 @default.
- W3133789260 citedByCount "5" @default.
- W3133789260 countsByYear W31337892602022 @default.
- W3133789260 countsByYear W31337892602023 @default.
- W3133789260 crossrefType "journal-article" @default.
- W3133789260 hasAuthorship W3133789260A5002665746 @default.
- W3133789260 hasAuthorship W3133789260A5013913630 @default.
- W3133789260 hasAuthorship W3133789260A5020701012 @default.
- W3133789260 hasAuthorship W3133789260A5022626645 @default.
- W3133789260 hasAuthorship W3133789260A5040965924 @default.
- W3133789260 hasAuthorship W3133789260A5078015739 @default.
- W3133789260 hasAuthorship W3133789260A5090999256 @default.
- W3133789260 hasConcept C101738243 @default.
- W3133789260 hasConcept C111919701 @default.
- W3133789260 hasConcept C11413529 @default.
- W3133789260 hasConcept C120665830 @default.
- W3133789260 hasConcept C121332964 @default.
- W3133789260 hasConcept C134306372 @default.
- W3133789260 hasConcept C138885662 @default.
- W3133789260 hasConcept C141349535 @default.
- W3133789260 hasConcept C153180895 @default.
- W3133789260 hasConcept C154945302 @default.
- W3133789260 hasConcept C15627037 @default.
- W3133789260 hasConcept C158525013 @default.
- W3133789260 hasConcept C16910744 @default.
- W3133789260 hasConcept C169903167 @default.
- W3133789260 hasConcept C177264268 @default.
- W3133789260 hasConcept C186060115 @default.
- W3133789260 hasConcept C192562407 @default.
- W3133789260 hasConcept C199360897 @default.
- W3133789260 hasConcept C2777735758 @default.
- W3133789260 hasConcept C33923547 @default.
- W3133789260 hasConcept C41008148 @default.
- W3133789260 hasConcept C41895202 @default.
- W3133789260 hasConcept C50644808 @default.
- W3133789260 hasConcept C520434653 @default.
- W3133789260 hasConcept C58489278 @default.
- W3133789260 hasConcept C81363708 @default.
- W3133789260 hasConcept C86803240 @default.
- W3133789260 hasConcept C98045186 @default.
- W3133789260 hasConceptScore W3133789260C101738243 @default.