Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133856960> ?p ?o ?g. }
- W3133856960 abstract "Abstract One of the core challenges in applying machine learning and artificial intelligence to medicine is the limited availability of annotated medical data. Unlike in other applications of machine learning, where an abundance of labeled data is available, the labeling and annotation of medical data and images require a major effort of manual work by expert clinicians who do not have the time to annotate manually. In this work, we propose a new deep learning technique (SLIVER-net), to predict clinical features from 3-dimensional volumes using a limited number of manually annotated examples. SLIVER-net is based on transfer learning, where we borrow information about the structure and parameters of the network from publicly available large datasets. Since public volume data are scarce, we use 2D images and account for the 3-dimensional structure using a novel deep learning method which tiles the volume scans, and then adds layers that leverage the 3D structure. In order to illustrate its utility, we apply SLIVER-net to predict risk factors for progression of age-related macular degeneration (AMD), a leading cause of blindness, from optical coherence tomography (OCT) volumes acquired from multiple sites. SLIVER-net successfully predicts these factors despite being trained with a relatively small number of annotated volumes (hundreds) and only dozens of positive training examples. Our empirical evaluation demonstrates that SLIVER-net significantly outperforms standard state-of-the-art deep learning techniques used for medical volumes, and its performance is generalizable as it was validated on an external testing set. In a direct comparison with a clinician panel, we find that SLIVER-net also outperforms junior specialists, and identifies AMD progression risk factors similarly to expert retina specialists." @default.
- W3133856960 created "2021-03-15" @default.
- W3133856960 creator A5011628221 @default.
- W3133856960 creator A5014881844 @default.
- W3133856960 creator A5020266650 @default.
- W3133856960 creator A5031154940 @default.
- W3133856960 creator A5033127132 @default.
- W3133856960 creator A5049741676 @default.
- W3133856960 creator A5050273239 @default.
- W3133856960 creator A5051179751 @default.
- W3133856960 creator A5051392188 @default.
- W3133856960 creator A5067772046 @default.
- W3133856960 creator A5069324665 @default.
- W3133856960 creator A5070758929 @default.
- W3133856960 creator A5078896965 @default.
- W3133856960 creator A5083112097 @default.
- W3133856960 date "2021-03-08" @default.
- W3133856960 modified "2023-10-17" @default.
- W3133856960 title "Automated identification of clinical features from sparsely annotated 3-dimensional medical imaging" @default.
- W3133856960 cites W1544180249 @default.
- W3133856960 cites W1871050032 @default.
- W3133856960 cites W1929306827 @default.
- W3133856960 cites W2063967273 @default.
- W3133856960 cites W2067963527 @default.
- W3133856960 cites W2092347662 @default.
- W3133856960 cites W2108598243 @default.
- W3133856960 cites W2161381512 @default.
- W3133856960 cites W2165698076 @default.
- W3133856960 cites W2194775991 @default.
- W3133856960 cites W2253429366 @default.
- W3133856960 cites W2301358467 @default.
- W3133856960 cites W2321377840 @default.
- W3133856960 cites W2343172899 @default.
- W3133856960 cites W2345010043 @default.
- W3133856960 cites W2395579298 @default.
- W3133856960 cites W2561981131 @default.
- W3133856960 cites W2567599812 @default.
- W3133856960 cites W2580596898 @default.
- W3133856960 cites W2589409328 @default.
- W3133856960 cites W2619932586 @default.
- W3133856960 cites W2639586488 @default.
- W3133856960 cites W2762748531 @default.
- W3133856960 cites W2766873368 @default.
- W3133856960 cites W2788633781 @default.
- W3133856960 cites W2791142503 @default.
- W3133856960 cites W2801087040 @default.
- W3133856960 cites W2807876212 @default.
- W3133856960 cites W2847659972 @default.
- W3133856960 cites W2886281300 @default.
- W3133856960 cites W2896056014 @default.
- W3133856960 cites W2900348123 @default.
- W3133856960 cites W2912650418 @default.
- W3133856960 cites W2916686134 @default.
- W3133856960 cites W2917124146 @default.
- W3133856960 cites W2935946658 @default.
- W3133856960 cites W2947329651 @default.
- W3133856960 cites W2962914239 @default.
- W3133856960 cites W2963803174 @default.
- W3133856960 cites W2963946669 @default.
- W3133856960 cites W2971013993 @default.
- W3133856960 cites W3006436762 @default.
- W3133856960 cites W3102785203 @default.
- W3133856960 cites W3125261624 @default.
- W3133856960 cites W4252684946 @default.
- W3133856960 doi "https://doi.org/10.1038/s41746-021-00411-w" @default.
- W3133856960 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7940637" @default.
- W3133856960 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33686212" @default.
- W3133856960 hasPublicationYear "2021" @default.
- W3133856960 type Work @default.
- W3133856960 sameAs 3133856960 @default.
- W3133856960 citedByCount "13" @default.
- W3133856960 countsByYear W31338569602021 @default.
- W3133856960 countsByYear W31338569602022 @default.
- W3133856960 countsByYear W31338569602023 @default.
- W3133856960 crossrefType "journal-article" @default.
- W3133856960 hasAuthorship W3133856960A5011628221 @default.
- W3133856960 hasAuthorship W3133856960A5014881844 @default.
- W3133856960 hasAuthorship W3133856960A5020266650 @default.
- W3133856960 hasAuthorship W3133856960A5031154940 @default.
- W3133856960 hasAuthorship W3133856960A5033127132 @default.
- W3133856960 hasAuthorship W3133856960A5049741676 @default.
- W3133856960 hasAuthorship W3133856960A5050273239 @default.
- W3133856960 hasAuthorship W3133856960A5051179751 @default.
- W3133856960 hasAuthorship W3133856960A5051392188 @default.
- W3133856960 hasAuthorship W3133856960A5067772046 @default.
- W3133856960 hasAuthorship W3133856960A5069324665 @default.
- W3133856960 hasAuthorship W3133856960A5070758929 @default.
- W3133856960 hasAuthorship W3133856960A5078896965 @default.
- W3133856960 hasAuthorship W3133856960A5083112097 @default.
- W3133856960 hasBestOaLocation W31338569601 @default.
- W3133856960 hasConcept C108583219 @default.
- W3133856960 hasConcept C116834253 @default.
- W3133856960 hasConcept C118487528 @default.
- W3133856960 hasConcept C119857082 @default.
- W3133856960 hasConcept C124101348 @default.
- W3133856960 hasConcept C150899416 @default.
- W3133856960 hasConcept C153083717 @default.
- W3133856960 hasConcept C154945302 @default.
- W3133856960 hasConcept C169903167 @default.
- W3133856960 hasConcept C2776321320 @default.