Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133858468> ?p ?o ?g. }
- W3133858468 endingPage "1631" @default.
- W3133858468 startingPage "1618" @default.
- W3133858468 abstract "Automatic gastric tumor segmentation and lymph node (LN) classification not only can assist radiologists in reading images, but also provide image-guided clinical diagnosis and improve diagnosis accuracy. However, due to the inhomogeneous intensity distribution of gastric tumor and LN in CT scans, the ambiguous/missing boundaries, and highly variable shapes of gastric tumor, it is quite challenging to develop an automatic solution. To comprehensively address these challenges, we propose a novel 3D multi-attention guided multi-task learning network for simultaneous gastric tumor segmentation and LN classification, which makes full use of the complementary information extracted from different dimensions, scales, and tasks. Specifically, we tackle task correlation and heterogeneity with the convolutional neural network consisting of scale-aware attention-guided shared feature learning for refined and universal multi-scale features, and task-aware attention-guided feature learning for task-specific discriminative features. This shared feature learning is equipped with two types of scale-aware attention (visual attention and adaptive spatial attention) and two stage-wise deep supervision paths. The task-aware attention-guided feature learning comprises a segmentation-aware attention module and a classification-aware attention module. The proposed 3D multi-task learning network can balance all tasks by combining segmentation and classification loss functions with weight uncertainty. We evaluate our model on an in-house CT images dataset collected from three medical centers. Experimental results demonstrate that our method outperforms the state-of-the-art algorithms, and obtains promising performance for tumor segmentation and LN classification. Moreover, to explore the generalization for other segmentation tasks, we also extend the proposed network to liver tumor segmentation in CT images of the MICCAI 2017 Liver Tumor Segmentation Challenge. Our implementation is released at https://github.com/infinite-tao/MA-MTLN." @default.
- W3133858468 created "2021-03-15" @default.
- W3133858468 creator A5014528965 @default.
- W3133858468 creator A5030234898 @default.
- W3133858468 creator A5031202827 @default.
- W3133858468 creator A5043302969 @default.
- W3133858468 creator A5046543349 @default.
- W3133858468 creator A5048331196 @default.
- W3133858468 creator A5050648982 @default.
- W3133858468 creator A5053045432 @default.
- W3133858468 creator A5076739463 @default.
- W3133858468 creator A5084075594 @default.
- W3133858468 date "2021-06-01" @default.
- W3133858468 modified "2023-10-18" @default.
- W3133858468 title "3D Multi-Attention Guided Multi-Task Learning Network for Automatic Gastric Tumor Segmentation and Lymph Node Classification" @default.
- W3133858468 cites W111214574 @default.
- W3133858468 cites W1896424170 @default.
- W3133858468 cites W1903029394 @default.
- W3133858468 cites W2115560616 @default.
- W3133858468 cites W2126120066 @default.
- W3133858468 cites W2131006320 @default.
- W3133858468 cites W2137587467 @default.
- W3133858468 cites W2161692227 @default.
- W3133858468 cites W2164364459 @default.
- W3133858468 cites W2165966284 @default.
- W3133858468 cites W2194775991 @default.
- W3133858468 cites W2394599079 @default.
- W3133858468 cites W2463818697 @default.
- W3133858468 cites W2549139847 @default.
- W3133858468 cites W2553191729 @default.
- W3133858468 cites W2565639579 @default.
- W3133858468 cites W2752782242 @default.
- W3133858468 cites W2774652621 @default.
- W3133858468 cites W2793117765 @default.
- W3133858468 cites W2884585870 @default.
- W3133858468 cites W2889646458 @default.
- W3133858468 cites W2899607431 @default.
- W3133858468 cites W2900237898 @default.
- W3133858468 cites W2911578927 @default.
- W3133858468 cites W2913637767 @default.
- W3133858468 cites W2942718495 @default.
- W3133858468 cites W2952234052 @default.
- W3133858468 cites W2962914239 @default.
- W3133858468 cites W2963091558 @default.
- W3133858468 cites W2963430933 @default.
- W3133858468 cites W2963446712 @default.
- W3133858468 cites W2963677766 @default.
- W3133858468 cites W2963881378 @default.
- W3133858468 cites W2964227007 @default.
- W3133858468 cites W2971032337 @default.
- W3133858468 cites W3008652188 @default.
- W3133858468 cites W3034514115 @default.
- W3133858468 cites W3034971973 @default.
- W3133858468 cites W3101874879 @default.
- W3133858468 cites W3102875249 @default.
- W3133858468 cites W4211130279 @default.
- W3133858468 doi "https://doi.org/10.1109/tmi.2021.3062902" @default.
- W3133858468 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33646948" @default.
- W3133858468 hasPublicationYear "2021" @default.
- W3133858468 type Work @default.
- W3133858468 sameAs 3133858468 @default.
- W3133858468 citedByCount "49" @default.
- W3133858468 countsByYear W31338584682021 @default.
- W3133858468 countsByYear W31338584682022 @default.
- W3133858468 countsByYear W31338584682023 @default.
- W3133858468 crossrefType "journal-article" @default.
- W3133858468 hasAuthorship W3133858468A5014528965 @default.
- W3133858468 hasAuthorship W3133858468A5030234898 @default.
- W3133858468 hasAuthorship W3133858468A5031202827 @default.
- W3133858468 hasAuthorship W3133858468A5043302969 @default.
- W3133858468 hasAuthorship W3133858468A5046543349 @default.
- W3133858468 hasAuthorship W3133858468A5048331196 @default.
- W3133858468 hasAuthorship W3133858468A5050648982 @default.
- W3133858468 hasAuthorship W3133858468A5053045432 @default.
- W3133858468 hasAuthorship W3133858468A5076739463 @default.
- W3133858468 hasAuthorship W3133858468A5084075594 @default.
- W3133858468 hasConcept C108583219 @default.
- W3133858468 hasConcept C119857082 @default.
- W3133858468 hasConcept C124504099 @default.
- W3133858468 hasConcept C138885662 @default.
- W3133858468 hasConcept C153180895 @default.
- W3133858468 hasConcept C154945302 @default.
- W3133858468 hasConcept C162324750 @default.
- W3133858468 hasConcept C187736073 @default.
- W3133858468 hasConcept C2776401178 @default.
- W3133858468 hasConcept C2780451532 @default.
- W3133858468 hasConcept C28006648 @default.
- W3133858468 hasConcept C41008148 @default.
- W3133858468 hasConcept C41895202 @default.
- W3133858468 hasConcept C52622490 @default.
- W3133858468 hasConcept C59404180 @default.
- W3133858468 hasConcept C81363708 @default.
- W3133858468 hasConcept C89600930 @default.
- W3133858468 hasConcept C97931131 @default.
- W3133858468 hasConceptScore W3133858468C108583219 @default.
- W3133858468 hasConceptScore W3133858468C119857082 @default.
- W3133858468 hasConceptScore W3133858468C124504099 @default.
- W3133858468 hasConceptScore W3133858468C138885662 @default.