Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133892889> ?p ?o ?g. }
- W3133892889 endingPage "552" @default.
- W3133892889 startingPage "552" @default.
- W3133892889 abstract "The data generated in modern agricultural operations are provided by diverse elements, which allow a better understanding of the dynamic conditions of the crop, soil and climate, which indicates that these processes will be increasingly data-driven. Big Data and Machine Learning (ML) have emerged as high-performance computing technologies to create new opportunities to unravel, quantify and understand agricultural processes through data. However, there are many challenges to achieve the integration of these technologies. It implies making some adaptations to ML for using it with Big Data. These adaptations must consider the increasing volume of data, its variety and the transmission speed issues. This paper provides information on the use of Big Data and ML for agriculture, identifying challenges, adaptations and the design of architectures for these systems. We conducted a Systematic Literature Review (SLR), which allowed us to analyze 34 real cases applied in agriculture. This review may be of interest to computer or data scientists and electronic or software engineers. The results show that manipulating large volumes of data is no longer a challenge due to Cloud technologies. There are still challenges regarding (1) processing speed due to little control of the data in its different stages, raw, semi-processed and processed data (value data); (2) information visualization systems, which support technical data little understood by farmers." @default.
- W3133892889 created "2021-03-15" @default.
- W3133892889 creator A5033455573 @default.
- W3133892889 creator A5091598933 @default.
- W3133892889 date "2021-02-26" @default.
- W3133892889 modified "2023-10-06" @default.
- W3133892889 title "Use and Adaptations of Machine Learning in Big Data—Applications in Real Cases in Agriculture" @default.
- W3133892889 cites W1978331315 @default.
- W3133892889 cites W1984020445 @default.
- W3133892889 cites W2045125148 @default.
- W3133892889 cites W2045621032 @default.
- W3133892889 cites W2051245758 @default.
- W3133892889 cites W2072750586 @default.
- W3133892889 cites W2134295053 @default.
- W3133892889 cites W2164777277 @default.
- W3133892889 cites W2168811232 @default.
- W3133892889 cites W2180345992 @default.
- W3133892889 cites W2261808795 @default.
- W3133892889 cites W2294798388 @default.
- W3133892889 cites W2303147257 @default.
- W3133892889 cites W2346258556 @default.
- W3133892889 cites W2406349003 @default.
- W3133892889 cites W2576683119 @default.
- W3133892889 cites W2587466508 @default.
- W3133892889 cites W2599712850 @default.
- W3133892889 cites W2601302400 @default.
- W3133892889 cites W2609731728 @default.
- W3133892889 cites W2758061443 @default.
- W3133892889 cites W2761140038 @default.
- W3133892889 cites W2783509132 @default.
- W3133892889 cites W2785444232 @default.
- W3133892889 cites W2786088556 @default.
- W3133892889 cites W2786476464 @default.
- W3133892889 cites W2808119291 @default.
- W3133892889 cites W2809602495 @default.
- W3133892889 cites W2885094488 @default.
- W3133892889 cites W2885770726 @default.
- W3133892889 cites W2889064303 @default.
- W3133892889 cites W2889193967 @default.
- W3133892889 cites W2901988499 @default.
- W3133892889 cites W2921526009 @default.
- W3133892889 cites W2937478302 @default.
- W3133892889 cites W2940610781 @default.
- W3133892889 cites W2940612541 @default.
- W3133892889 cites W2942047515 @default.
- W3133892889 cites W2942076272 @default.
- W3133892889 cites W2946508622 @default.
- W3133892889 cites W2953636448 @default.
- W3133892889 cites W2963130197 @default.
- W3133892889 cites W2963935416 @default.
- W3133892889 cites W2973657542 @default.
- W3133892889 cites W2977048736 @default.
- W3133892889 cites W2986245349 @default.
- W3133892889 cites W2989611399 @default.
- W3133892889 cites W2989767070 @default.
- W3133892889 cites W3001317580 @default.
- W3133892889 cites W3005238825 @default.
- W3133892889 cites W3005663193 @default.
- W3133892889 cites W3016491169 @default.
- W3133892889 cites W3016913961 @default.
- W3133892889 cites W3026920442 @default.
- W3133892889 cites W3035305119 @default.
- W3133892889 cites W3041906494 @default.
- W3133892889 cites W3043068378 @default.
- W3133892889 cites W3045041747 @default.
- W3133892889 cites W3096462768 @default.
- W3133892889 cites W3107975349 @default.
- W3133892889 cites W4247384615 @default.
- W3133892889 cites W4249178557 @default.
- W3133892889 doi "https://doi.org/10.3390/electronics10050552" @default.
- W3133892889 hasPublicationYear "2021" @default.
- W3133892889 type Work @default.
- W3133892889 sameAs 3133892889 @default.
- W3133892889 citedByCount "41" @default.
- W3133892889 countsByYear W31338928892021 @default.
- W3133892889 countsByYear W31338928892022 @default.
- W3133892889 countsByYear W31338928892023 @default.
- W3133892889 crossrefType "journal-article" @default.
- W3133892889 hasAuthorship W3133892889A5033455573 @default.
- W3133892889 hasAuthorship W3133892889A5091598933 @default.
- W3133892889 hasBestOaLocation W31338928891 @default.
- W3133892889 hasConcept C111919701 @default.
- W3133892889 hasConcept C118518473 @default.
- W3133892889 hasConcept C120665830 @default.
- W3133892889 hasConcept C121332964 @default.
- W3133892889 hasConcept C124101348 @default.
- W3133892889 hasConcept C132964779 @default.
- W3133892889 hasConcept C136197465 @default.
- W3133892889 hasConcept C139807058 @default.
- W3133892889 hasConcept C154945302 @default.
- W3133892889 hasConcept C18903297 @default.
- W3133892889 hasConcept C199360897 @default.
- W3133892889 hasConcept C2522767166 @default.
- W3133892889 hasConcept C2777904410 @default.
- W3133892889 hasConcept C41008148 @default.
- W3133892889 hasConcept C75684735 @default.
- W3133892889 hasConcept C79974875 @default.
- W3133892889 hasConcept C86803240 @default.