Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133913358> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3133913358 endingPage "2673" @default.
- W3133913358 startingPage "2665" @default.
- W3133913358 abstract "Due to emerging development of intelligent sensing technologies in Internet of Things, multisensor cooperation has been widely deployed in applications. Although multisensor information fusion can be addressed by multiview learning, its performance tends to degrade if any one sensor is disturbed with annoying noises by the environment or other factors. Therefore, fusing these cross-sensor data in a reliable and secure manner while removing those noises is crucial. Although there have been outlier-against multiview works proposed, most of them suffer from redundant parameters or performance degradation. Even worse, few of them have considered the complementary information across the sensors. In this article, we argue that in multiview information fusion, not only the clean data, but also those outliers share the same prototypes in a common space, except that the outliers are disturbed with noises. To this end, we propose a type of robust multiview prototype (RMVP) learning to fuse the sensing data while removing the noises automatically in the learning process. Specifically, in RMVP, projection matrices are designed for each sensing view to sketch the data prototypes. In addition, one auxiliary margin matrix is modeled for each sensing view to capture its data noises through penalizing a sparsity regularization on it. Afterwards, an alternating algorithm is presented to solve the proposed model. Finally, extensive experiments on intelligent sensing data sets are conducted to testify the effectiveness of the proposed method." @default.
- W3133913358 created "2021-03-15" @default.
- W3133913358 creator A5035295324 @default.
- W3133913358 creator A5037443625 @default.
- W3133913358 creator A5041610421 @default.
- W3133913358 creator A5067520228 @default.
- W3133913358 date "2022-04-01" @default.
- W3133913358 modified "2023-09-27" @default.
- W3133913358 title "Reliable Sensing Data Fusion Through Robust Multiview Prototype Learning" @default.
- W3133913358 cites W2014986661 @default.
- W3133913358 cites W2048030021 @default.
- W3133913358 cites W2100235303 @default.
- W3133913358 cites W2132870739 @default.
- W3133913358 cites W2146842127 @default.
- W3133913358 cites W2165673880 @default.
- W3133913358 cites W2186500555 @default.
- W3133913358 cites W2405680777 @default.
- W3133913358 cites W2428757121 @default.
- W3133913358 cites W2758021822 @default.
- W3133913358 cites W2779447882 @default.
- W3133913358 cites W2809400334 @default.
- W3133913358 cites W2962795442 @default.
- W3133913358 cites W2971762208 @default.
- W3133913358 cites W2977797911 @default.
- W3133913358 cites W3018055328 @default.
- W3133913358 cites W3024453984 @default.
- W3133913358 cites W3036890664 @default.
- W3133913358 cites W3040558883 @default.
- W3133913358 cites W3100686023 @default.
- W3133913358 cites W3143107425 @default.
- W3133913358 cites W4244393449 @default.
- W3133913358 cites W580709845 @default.
- W3133913358 doi "https://doi.org/10.1109/tii.2021.3064358" @default.
- W3133913358 hasPublicationYear "2022" @default.
- W3133913358 type Work @default.
- W3133913358 sameAs 3133913358 @default.
- W3133913358 citedByCount "2" @default.
- W3133913358 countsByYear W31339133582023 @default.
- W3133913358 crossrefType "journal-article" @default.
- W3133913358 hasAuthorship W3133913358A5035295324 @default.
- W3133913358 hasAuthorship W3133913358A5037443625 @default.
- W3133913358 hasAuthorship W3133913358A5041610421 @default.
- W3133913358 hasAuthorship W3133913358A5067520228 @default.
- W3133913358 hasConcept C104317684 @default.
- W3133913358 hasConcept C119599485 @default.
- W3133913358 hasConcept C124101348 @default.
- W3133913358 hasConcept C127413603 @default.
- W3133913358 hasConcept C141353440 @default.
- W3133913358 hasConcept C153180895 @default.
- W3133913358 hasConcept C154945302 @default.
- W3133913358 hasConcept C185592680 @default.
- W3133913358 hasConcept C31972630 @default.
- W3133913358 hasConcept C33954974 @default.
- W3133913358 hasConcept C41008148 @default.
- W3133913358 hasConcept C55493867 @default.
- W3133913358 hasConcept C63479239 @default.
- W3133913358 hasConcept C67186912 @default.
- W3133913358 hasConcept C77088390 @default.
- W3133913358 hasConcept C79337645 @default.
- W3133913358 hasConceptScore W3133913358C104317684 @default.
- W3133913358 hasConceptScore W3133913358C119599485 @default.
- W3133913358 hasConceptScore W3133913358C124101348 @default.
- W3133913358 hasConceptScore W3133913358C127413603 @default.
- W3133913358 hasConceptScore W3133913358C141353440 @default.
- W3133913358 hasConceptScore W3133913358C153180895 @default.
- W3133913358 hasConceptScore W3133913358C154945302 @default.
- W3133913358 hasConceptScore W3133913358C185592680 @default.
- W3133913358 hasConceptScore W3133913358C31972630 @default.
- W3133913358 hasConceptScore W3133913358C33954974 @default.
- W3133913358 hasConceptScore W3133913358C41008148 @default.
- W3133913358 hasConceptScore W3133913358C55493867 @default.
- W3133913358 hasConceptScore W3133913358C63479239 @default.
- W3133913358 hasConceptScore W3133913358C67186912 @default.
- W3133913358 hasConceptScore W3133913358C77088390 @default.
- W3133913358 hasConceptScore W3133913358C79337645 @default.
- W3133913358 hasFunder F4320321001 @default.
- W3133913358 hasFunder F4320322769 @default.
- W3133913358 hasFunder F4320335787 @default.
- W3133913358 hasIssue "4" @default.
- W3133913358 hasLocation W31339133581 @default.
- W3133913358 hasOpenAccess W3133913358 @default.
- W3133913358 hasPrimaryLocation W31339133581 @default.
- W3133913358 hasRelatedWork W1999222583 @default.
- W3133913358 hasRelatedWork W2035976912 @default.
- W3133913358 hasRelatedWork W2110121521 @default.
- W3133913358 hasRelatedWork W251639349 @default.
- W3133913358 hasRelatedWork W2541791370 @default.
- W3133913358 hasRelatedWork W2565829216 @default.
- W3133913358 hasRelatedWork W2912737833 @default.
- W3133913358 hasRelatedWork W2921707373 @default.
- W3133913358 hasRelatedWork W3176112670 @default.
- W3133913358 hasRelatedWork W3202424074 @default.
- W3133913358 hasVolume "18" @default.
- W3133913358 isParatext "false" @default.
- W3133913358 isRetracted "false" @default.
- W3133913358 magId "3133913358" @default.
- W3133913358 workType "article" @default.