Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133945868> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3133945868 endingPage "167869" @default.
- W3133945868 startingPage "167869" @default.
- W3133945868 abstract "Understanding the magnetic interaction force between permanent magnets is important for the design and optimization of the system where they are implemented. However, the methods that are utilized in the literature to compute this force are either time-consuming or approximated with a low degree of generalization. This article presents a surrogate model developed based on a data-driven approach using a deep learning method which addresses this problem. Firstly, a charge model is applied to derive a semi-analytical model (SAM) of the interaction forces between permanent magnets. Using this SAM, the features of the deep learning model (DLM) have been selected, and the training, validation and test datasets that are used to train the DLM have been generated. The DLM training process took 2 h and 30 mins to complete. The difference between the SAM and deep learning model is less than 4.2%, and there are 99.2% and 96.05% of the cases over 885 random tested samples where the errors are less than 2% and 1%, respectively; this indicates that the selected deep learning model is feasible and can provide accurate results compared to the original SAM. Moreover, the permutation feature importance (PFI) analysis shows that the most predictive feature is the separation distance between the magnets, and the heights of the magnets have less predictive power than their radii; the generality of the deep learning model is also demonstrated based on the PFI criteria. Furthermore, compared with Finite Element Analysis (FEA) and the SAM, the surrogate model yields a high accuracy of prediction (the minimum, average and maximum differences between the surrogate and FEA models are 0.06%, 0.42% and 1.74%, respectively) while it required a computational time less than 10-4 s, which is multiple orders of magnitude lower than its FEA and SAM counterparts. The developed data-driven surrogate model can facilitate the design, optimization processes of permanent magnet systems and online computation of the magnetic force through a dynamic study. In addition, using the superposition principle, the magnetic forces between cross-shaped permanent magnets can be computed using the surrogate model. The authors have further designed a user-friendly software interface to compute the magnetic force using the recently developed surrogate model; the software is publicly available under the CC BY 4.0 license, and can be found at: https://github.com/vantainguyen/Force-between-magnets-machine-learning." @default.
- W3133945868 created "2021-03-15" @default.
- W3133945868 creator A5006216563 @default.
- W3133945868 creator A5091085930 @default.
- W3133945868 creator A5003166183 @default.
- W3133945868 date "2021-08-01" @default.
- W3133945868 modified "2023-09-26" @default.
- W3133945868 title "Data – Driven modelling of the interaction force between permanent magnets" @default.
- W3133945868 cites W1966447062 @default.
- W3133945868 cites W1982514318 @default.
- W3133945868 cites W2034282397 @default.
- W3133945868 cites W2064626571 @default.
- W3133945868 cites W2128338034 @default.
- W3133945868 cites W2760049432 @default.
- W3133945868 cites W2781352416 @default.
- W3133945868 cites W2791798351 @default.
- W3133945868 cites W2899482917 @default.
- W3133945868 cites W2911964244 @default.
- W3133945868 cites W2914052665 @default.
- W3133945868 cites W2921249770 @default.
- W3133945868 cites W2921710869 @default.
- W3133945868 cites W2959708367 @default.
- W3133945868 cites W2964088622 @default.
- W3133945868 cites W2986935521 @default.
- W3133945868 cites W2997571663 @default.
- W3133945868 cites W2999509561 @default.
- W3133945868 cites W3010184505 @default.
- W3133945868 cites W4240919341 @default.
- W3133945868 doi "https://doi.org/10.1016/j.jmmm.2021.167869" @default.
- W3133945868 hasPublicationYear "2021" @default.
- W3133945868 type Work @default.
- W3133945868 sameAs 3133945868 @default.
- W3133945868 citedByCount "3" @default.
- W3133945868 countsByYear W31339458682021 @default.
- W3133945868 countsByYear W31339458682022 @default.
- W3133945868 crossrefType "journal-article" @default.
- W3133945868 hasAuthorship W3133945868A5003166183 @default.
- W3133945868 hasAuthorship W3133945868A5006216563 @default.
- W3133945868 hasAuthorship W3133945868A5091085930 @default.
- W3133945868 hasConcept C108583219 @default.
- W3133945868 hasConcept C11413529 @default.
- W3133945868 hasConcept C119857082 @default.
- W3133945868 hasConcept C121332964 @default.
- W3133945868 hasConcept C134306372 @default.
- W3133945868 hasConcept C135628077 @default.
- W3133945868 hasConcept C138885662 @default.
- W3133945868 hasConcept C154945302 @default.
- W3133945868 hasConcept C16389437 @default.
- W3133945868 hasConcept C177148314 @default.
- W3133945868 hasConcept C2776401178 @default.
- W3133945868 hasConcept C33923547 @default.
- W3133945868 hasConcept C41008148 @default.
- W3133945868 hasConcept C41895202 @default.
- W3133945868 hasConcept C62520636 @default.
- W3133945868 hasConcept C97355855 @default.
- W3133945868 hasConceptScore W3133945868C108583219 @default.
- W3133945868 hasConceptScore W3133945868C11413529 @default.
- W3133945868 hasConceptScore W3133945868C119857082 @default.
- W3133945868 hasConceptScore W3133945868C121332964 @default.
- W3133945868 hasConceptScore W3133945868C134306372 @default.
- W3133945868 hasConceptScore W3133945868C135628077 @default.
- W3133945868 hasConceptScore W3133945868C138885662 @default.
- W3133945868 hasConceptScore W3133945868C154945302 @default.
- W3133945868 hasConceptScore W3133945868C16389437 @default.
- W3133945868 hasConceptScore W3133945868C177148314 @default.
- W3133945868 hasConceptScore W3133945868C2776401178 @default.
- W3133945868 hasConceptScore W3133945868C33923547 @default.
- W3133945868 hasConceptScore W3133945868C41008148 @default.
- W3133945868 hasConceptScore W3133945868C41895202 @default.
- W3133945868 hasConceptScore W3133945868C62520636 @default.
- W3133945868 hasConceptScore W3133945868C97355855 @default.
- W3133945868 hasFunder F4320320984 @default.
- W3133945868 hasLocation W31339458681 @default.
- W3133945868 hasOpenAccess W3133945868 @default.
- W3133945868 hasPrimaryLocation W31339458681 @default.
- W3133945868 hasRelatedWork W2922457425 @default.
- W3133945868 hasRelatedWork W3014300295 @default.
- W3133945868 hasRelatedWork W3164822677 @default.
- W3133945868 hasRelatedWork W4223943233 @default.
- W3133945868 hasRelatedWork W4225161397 @default.
- W3133945868 hasRelatedWork W4250304930 @default.
- W3133945868 hasRelatedWork W4309045103 @default.
- W3133945868 hasRelatedWork W4312200629 @default.
- W3133945868 hasRelatedWork W4360585206 @default.
- W3133945868 hasRelatedWork W4364306694 @default.
- W3133945868 hasVolume "532" @default.
- W3133945868 isParatext "false" @default.
- W3133945868 isRetracted "false" @default.
- W3133945868 magId "3133945868" @default.
- W3133945868 workType "article" @default.