Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133996280> ?p ?o ?g. }
- W3133996280 endingPage "1802.e2" @default.
- W3133996280 startingPage "1795" @default.
- W3133996280 abstract "ObjectiveThere has been increased interest in interventions to promote hepatocellular carcinoma (HCC) surveillance given low utilization and high proportions of late stage detection. Accurate prediction of patients likely versus unlikely to respond to interventions could allow a cost-effective approach to outreach and facilitate targeting more intensive interventions to likely non-responders.DesignWe conducted a secondary analysis of a randomized clinical trial evaluating a mailed outreach strategy to promote HCC surveillance among 1200 cirrhosis patients at a safety-net health system between December 2014 and March 2017. We developed regularized logistic regression (RLR) and gradient boosting machine (GBM) algorithm models to predict surveillance completion during each of the 3 screening rounds in a training set (n = 960). Model performance was assessed using multiple performance metrics in an independent test set (n = 240).ResultsAmong 1200 patients, surveillance was completed in 41-47% of patients over the three rounds. The RLR and GBM models demonstrated good discriminatory accuracy, with area under receiver operating characteristic (AUROC) curves of 0.67 and 0.66 respectively in the first surveillance round and improved to 0.77 by the third surveillance round after incorporating prior screening behavior as a feature. Additional performance characteristics including the Brier score, Hosmer-Lemeshow test and reliability diagrams were also evaluated. The most important variables for the predictive model were prior screening completion status and past primary care contact.ConclusionsPredictive models can help stratify patients’ likelihood to respond to surveillance outreach invitations, facilitating tailored strategies to maximize effectiveness and cost-effectiveness of HCC surveillance population health programs. There has been increased interest in interventions to promote hepatocellular carcinoma (HCC) surveillance given low utilization and high proportions of late stage detection. Accurate prediction of patients likely versus unlikely to respond to interventions could allow a cost-effective approach to outreach and facilitate targeting more intensive interventions to likely non-responders. We conducted a secondary analysis of a randomized clinical trial evaluating a mailed outreach strategy to promote HCC surveillance among 1200 cirrhosis patients at a safety-net health system between December 2014 and March 2017. We developed regularized logistic regression (RLR) and gradient boosting machine (GBM) algorithm models to predict surveillance completion during each of the 3 screening rounds in a training set (n = 960). Model performance was assessed using multiple performance metrics in an independent test set (n = 240). Among 1200 patients, surveillance was completed in 41-47% of patients over the three rounds. The RLR and GBM models demonstrated good discriminatory accuracy, with area under receiver operating characteristic (AUROC) curves of 0.67 and 0.66 respectively in the first surveillance round and improved to 0.77 by the third surveillance round after incorporating prior screening behavior as a feature. Additional performance characteristics including the Brier score, Hosmer-Lemeshow test and reliability diagrams were also evaluated. The most important variables for the predictive model were prior screening completion status and past primary care contact. Predictive models can help stratify patients’ likelihood to respond to surveillance outreach invitations, facilitating tailored strategies to maximize effectiveness and cost-effectiveness of HCC surveillance population health programs." @default.
- W3133996280 created "2021-03-15" @default.
- W3133996280 creator A5007337927 @default.
- W3133996280 creator A5014214683 @default.
- W3133996280 creator A5044240021 @default.
- W3133996280 creator A5061930051 @default.
- W3133996280 creator A5066123167 @default.
- W3133996280 creator A5084462006 @default.
- W3133996280 creator A5086221156 @default.
- W3133996280 creator A5091351028 @default.
- W3133996280 date "2022-08-01" @default.
- W3133996280 modified "2023-10-16" @default.
- W3133996280 title "Novel Application of Predictive Modeling: A Tailored Approach to Promoting HCC Surveillance in Patients With Cirrhosis" @default.
- W3133996280 cites W1997315571 @default.
- W3133996280 cites W2016206332 @default.
- W3133996280 cites W2038894963 @default.
- W3133996280 cites W2061784149 @default.
- W3133996280 cites W2062073423 @default.
- W3133996280 cites W2069129640 @default.
- W3133996280 cites W2089927027 @default.
- W3133996280 cites W2110033017 @default.
- W3133996280 cites W2132617924 @default.
- W3133996280 cites W2277004004 @default.
- W3133996280 cites W2335868753 @default.
- W3133996280 cites W2397708422 @default.
- W3133996280 cites W2416556204 @default.
- W3133996280 cites W2528614200 @default.
- W3133996280 cites W2546831876 @default.
- W3133996280 cites W2589019555 @default.
- W3133996280 cites W2751640563 @default.
- W3133996280 cites W2753576568 @default.
- W3133996280 cites W2766421257 @default.
- W3133996280 cites W2796067155 @default.
- W3133996280 cites W2806581056 @default.
- W3133996280 cites W2884587670 @default.
- W3133996280 cites W2886194374 @default.
- W3133996280 cites W2898314774 @default.
- W3133996280 cites W2902869319 @default.
- W3133996280 cites W2938945681 @default.
- W3133996280 cites W2952066800 @default.
- W3133996280 cites W2968470226 @default.
- W3133996280 cites W2984475812 @default.
- W3133996280 cites W2993509418 @default.
- W3133996280 cites W3021721319 @default.
- W3133996280 cites W3040428454 @default.
- W3133996280 cites W3087673141 @default.
- W3133996280 cites W3118211632 @default.
- W3133996280 cites W901036528 @default.
- W3133996280 doi "https://doi.org/10.1016/j.cgh.2021.02.038" @default.
- W3133996280 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33662594" @default.
- W3133996280 hasPublicationYear "2022" @default.
- W3133996280 type Work @default.
- W3133996280 sameAs 3133996280 @default.
- W3133996280 citedByCount "6" @default.
- W3133996280 countsByYear W31339962802022 @default.
- W3133996280 crossrefType "journal-article" @default.
- W3133996280 hasAuthorship W3133996280A5007337927 @default.
- W3133996280 hasAuthorship W3133996280A5014214683 @default.
- W3133996280 hasAuthorship W3133996280A5044240021 @default.
- W3133996280 hasAuthorship W3133996280A5061930051 @default.
- W3133996280 hasAuthorship W3133996280A5066123167 @default.
- W3133996280 hasAuthorship W3133996280A5084462006 @default.
- W3133996280 hasAuthorship W3133996280A5086221156 @default.
- W3133996280 hasAuthorship W3133996280A5091351028 @default.
- W3133996280 hasBestOaLocation W31339962801 @default.
- W3133996280 hasConcept C118552586 @default.
- W3133996280 hasConcept C119857082 @default.
- W3133996280 hasConcept C126322002 @default.
- W3133996280 hasConcept C151956035 @default.
- W3133996280 hasConcept C17744445 @default.
- W3133996280 hasConcept C194828623 @default.
- W3133996280 hasConcept C199539241 @default.
- W3133996280 hasConcept C27415008 @default.
- W3133996280 hasConcept C2778019345 @default.
- W3133996280 hasConcept C2779377019 @default.
- W3133996280 hasConcept C2781400479 @default.
- W3133996280 hasConcept C2908647359 @default.
- W3133996280 hasConcept C35405484 @default.
- W3133996280 hasConcept C41008148 @default.
- W3133996280 hasConcept C58471807 @default.
- W3133996280 hasConcept C71924100 @default.
- W3133996280 hasConcept C99454951 @default.
- W3133996280 hasConceptScore W3133996280C118552586 @default.
- W3133996280 hasConceptScore W3133996280C119857082 @default.
- W3133996280 hasConceptScore W3133996280C126322002 @default.
- W3133996280 hasConceptScore W3133996280C151956035 @default.
- W3133996280 hasConceptScore W3133996280C17744445 @default.
- W3133996280 hasConceptScore W3133996280C194828623 @default.
- W3133996280 hasConceptScore W3133996280C199539241 @default.
- W3133996280 hasConceptScore W3133996280C27415008 @default.
- W3133996280 hasConceptScore W3133996280C2778019345 @default.
- W3133996280 hasConceptScore W3133996280C2779377019 @default.
- W3133996280 hasConceptScore W3133996280C2781400479 @default.
- W3133996280 hasConceptScore W3133996280C2908647359 @default.
- W3133996280 hasConceptScore W3133996280C35405484 @default.
- W3133996280 hasConceptScore W3133996280C41008148 @default.
- W3133996280 hasConceptScore W3133996280C58471807 @default.
- W3133996280 hasConceptScore W3133996280C71924100 @default.