Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134002425> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3134002425 endingPage "101205" @default.
- W3134002425 startingPage "101205" @default.
- W3134002425 abstract "• For the first time, automatic detection of heart failure (HF) from speech is studied. • Both vocal tract and glottal source parameters are used in feature extraction. • Four machine learning algorithms are used as classifiers. • Applying Feature selection on glottal + vocal tract features improved classification accuracy. • Among the classifiers, the neural network gave the best performance. Heart failure (HF) is a major global health concern and is increasing in prevalence. It affects the larynx and breathing – thereby the quality of speech. In this article, we propose an approach for the automatic detection of people with HF using the speech signal. The proposed method explores mel-frequency cepstral coefficient (MFCC) features, glottal features, and their combination to distinguish HF from healthy speech. The glottal features were extracted from the voice source signal estimated using glottal inverse filtering. Four machine learning algorithms, namely, support vector machine, Extra Tree, AdaBoost, and feed-forward neural network (FFNN), were trained separately for individual features and their combination. It was observed that the MFCC features yielded higher classification accuracies compared to glottal features. Furthermore, the complementary nature of glottal features was investigated by combining these features with the MFCC features. Our results show that the FFNN classifier trained using a reduced set of glottal + MFCC features achieved the best overall performance in both speaker-dependent and speaker-independent scenarios." @default.
- W3134002425 created "2021-03-15" @default.
- W3134002425 creator A5025390071 @default.
- W3134002425 creator A5029767872 @default.
- W3134002425 creator A5041177415 @default.
- W3134002425 creator A5042186400 @default.
- W3134002425 creator A5052772081 @default.
- W3134002425 creator A5063594089 @default.
- W3134002425 creator A5072721935 @default.
- W3134002425 creator A5090129675 @default.
- W3134002425 date "2021-09-01" @default.
- W3134002425 modified "2023-09-24" @default.
- W3134002425 title "The automatic detection of heart failure using speech signals" @default.
- W3134002425 cites W1924962846 @default.
- W3134002425 cites W1970278793 @default.
- W3134002425 cites W1996162794 @default.
- W3134002425 cites W2009179928 @default.
- W3134002425 cites W2010817634 @default.
- W3134002425 cites W2024590593 @default.
- W3134002425 cites W2034926402 @default.
- W3134002425 cites W2051457717 @default.
- W3134002425 cites W2056132907 @default.
- W3134002425 cites W2063715182 @default.
- W3134002425 cites W2071738728 @default.
- W3134002425 cites W2115846934 @default.
- W3134002425 cites W2117245153 @default.
- W3134002425 cites W2132984323 @default.
- W3134002425 cites W2148154194 @default.
- W3134002425 cites W2162109146 @default.
- W3134002425 cites W2164846898 @default.
- W3134002425 cites W2292493149 @default.
- W3134002425 cites W2766371122 @default.
- W3134002425 cites W2810350850 @default.
- W3134002425 cites W2912697496 @default.
- W3134002425 cites W2946508582 @default.
- W3134002425 cites W2948106126 @default.
- W3134002425 cites W2999565548 @default.
- W3134002425 doi "https://doi.org/10.1016/j.csl.2021.101205" @default.
- W3134002425 hasPublicationYear "2021" @default.
- W3134002425 type Work @default.
- W3134002425 sameAs 3134002425 @default.
- W3134002425 citedByCount "9" @default.
- W3134002425 countsByYear W31340024252021 @default.
- W3134002425 countsByYear W31340024252022 @default.
- W3134002425 countsByYear W31340024252023 @default.
- W3134002425 crossrefType "journal-article" @default.
- W3134002425 hasAuthorship W3134002425A5025390071 @default.
- W3134002425 hasAuthorship W3134002425A5029767872 @default.
- W3134002425 hasAuthorship W3134002425A5041177415 @default.
- W3134002425 hasAuthorship W3134002425A5042186400 @default.
- W3134002425 hasAuthorship W3134002425A5052772081 @default.
- W3134002425 hasAuthorship W3134002425A5063594089 @default.
- W3134002425 hasAuthorship W3134002425A5072721935 @default.
- W3134002425 hasAuthorship W3134002425A5090129675 @default.
- W3134002425 hasBestOaLocation W31340024251 @default.
- W3134002425 hasConcept C154945302 @default.
- W3134002425 hasConcept C204321447 @default.
- W3134002425 hasConcept C28490314 @default.
- W3134002425 hasConcept C41008148 @default.
- W3134002425 hasConceptScore W3134002425C154945302 @default.
- W3134002425 hasConceptScore W3134002425C204321447 @default.
- W3134002425 hasConceptScore W3134002425C28490314 @default.
- W3134002425 hasConceptScore W3134002425C41008148 @default.
- W3134002425 hasFunder F4320321108 @default.
- W3134002425 hasLocation W31340024251 @default.
- W3134002425 hasLocation W31340024252 @default.
- W3134002425 hasLocation W31340024253 @default.
- W3134002425 hasOpenAccess W3134002425 @default.
- W3134002425 hasPrimaryLocation W31340024251 @default.
- W3134002425 hasRelatedWork W1552159754 @default.
- W3134002425 hasRelatedWork W2131420137 @default.
- W3134002425 hasRelatedWork W2148757832 @default.
- W3134002425 hasRelatedWork W2293457016 @default.
- W3134002425 hasRelatedWork W2368651715 @default.
- W3134002425 hasRelatedWork W2611614995 @default.
- W3134002425 hasRelatedWork W2789919619 @default.
- W3134002425 hasRelatedWork W3107474891 @default.
- W3134002425 hasRelatedWork W3169305685 @default.
- W3134002425 hasRelatedWork W4321496520 @default.
- W3134002425 hasVolume "69" @default.
- W3134002425 isParatext "false" @default.
- W3134002425 isRetracted "false" @default.
- W3134002425 magId "3134002425" @default.
- W3134002425 workType "article" @default.