Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134056413> ?p ?o ?g. }
- W3134056413 abstract "Blood pressure is a basic physiological parameter in the cardiovascular circulatory system. PhotoPlethysmoGraphy (PPG) signal represents a convenient, wearable, and low-cost technology that can be applied to various aspects of cardiovascular monitoring, including the detection of blood pressure, i.e., the hypertension level. The goal of this paper is to explore the behavior of a set of machine learning methods with respect to the hypertension risk stratification. With reference to this issue, the discrimination ability of the investigated algorithms has been considered at three different granularity levels, i.e. by suitably joining some of the classes making up the data set, so as to partition this latter into three different ways. To fulfill our goal, the Cuff-Less Blood Pressure Estimation Data Set is considered here. This data set is composed by many signals, including PPG data acquired from a group of subjects, and their Blood Pressure values, that are used to represent their hypertension levels. We have used a large group of machine learning tools, relying on differing working methods, and their numerical comparison has been carried out in terms of risk stratification results." @default.
- W3134056413 created "2021-03-15" @default.
- W3134056413 creator A5008040085 @default.
- W3134056413 creator A5025157025 @default.
- W3134056413 creator A5078804257 @default.
- W3134056413 date "2020-12-01" @default.
- W3134056413 modified "2023-09-25" @default.
- W3134056413 title "Photoplethysmography and Machine Learning for the Hypertension Risk Stratification" @default.
- W3134056413 cites W1498436455 @default.
- W3134056413 cites W1528113134 @default.
- W3134056413 cites W1528687555 @default.
- W3134056413 cites W1576226931 @default.
- W3134056413 cites W1670263352 @default.
- W3134056413 cites W1770625086 @default.
- W3134056413 cites W1912123407 @default.
- W3134056413 cites W2006345381 @default.
- W3134056413 cites W2023531846 @default.
- W3134056413 cites W2032530309 @default.
- W3134056413 cites W2071229756 @default.
- W3134056413 cites W2078742622 @default.
- W3134056413 cites W2083760618 @default.
- W3134056413 cites W2088204643 @default.
- W3134056413 cites W2106393550 @default.
- W3134056413 cites W2112076978 @default.
- W3134056413 cites W2122410182 @default.
- W3134056413 cites W2125055259 @default.
- W3134056413 cites W2132166479 @default.
- W3134056413 cites W2147169507 @default.
- W3134056413 cites W2151802193 @default.
- W3134056413 cites W2156121263 @default.
- W3134056413 cites W2162800060 @default.
- W3134056413 cites W2204680686 @default.
- W3134056413 cites W2313758645 @default.
- W3134056413 cites W2524709446 @default.
- W3134056413 cites W2560755629 @default.
- W3134056413 cites W2584146692 @default.
- W3134056413 cites W2755894455 @default.
- W3134056413 cites W2783413808 @default.
- W3134056413 cites W2783989798 @default.
- W3134056413 cites W2801417501 @default.
- W3134056413 cites W2886927786 @default.
- W3134056413 cites W2889351385 @default.
- W3134056413 cites W2898457169 @default.
- W3134056413 cites W2903610377 @default.
- W3134056413 cites W2906577143 @default.
- W3134056413 cites W2911964244 @default.
- W3134056413 cites W2912934387 @default.
- W3134056413 cites W2955961229 @default.
- W3134056413 cites W2989163328 @default.
- W3134056413 cites W3004706883 @default.
- W3134056413 cites W94523489 @default.
- W3134056413 doi "https://doi.org/10.1109/gcwkshps50303.2020.9367563" @default.
- W3134056413 hasPublicationYear "2020" @default.
- W3134056413 type Work @default.
- W3134056413 sameAs 3134056413 @default.
- W3134056413 citedByCount "0" @default.
- W3134056413 crossrefType "proceedings-article" @default.
- W3134056413 hasAuthorship W3134056413A5008040085 @default.
- W3134056413 hasAuthorship W3134056413A5025157025 @default.
- W3134056413 hasAuthorship W3134056413A5078804257 @default.
- W3134056413 hasConcept C100701293 @default.
- W3134056413 hasConcept C106131492 @default.
- W3134056413 hasConcept C114614502 @default.
- W3134056413 hasConcept C116390426 @default.
- W3134056413 hasConcept C119857082 @default.
- W3134056413 hasConcept C124101348 @default.
- W3134056413 hasConcept C126322002 @default.
- W3134056413 hasConcept C149635348 @default.
- W3134056413 hasConcept C150594956 @default.
- W3134056413 hasConcept C154945302 @default.
- W3134056413 hasConcept C164705383 @default.
- W3134056413 hasConcept C177264268 @default.
- W3134056413 hasConcept C192943249 @default.
- W3134056413 hasConcept C199360897 @default.
- W3134056413 hasConcept C3020404979 @default.
- W3134056413 hasConcept C31972630 @default.
- W3134056413 hasConcept C33923547 @default.
- W3134056413 hasConcept C3527866 @default.
- W3134056413 hasConcept C41008148 @default.
- W3134056413 hasConcept C42812 @default.
- W3134056413 hasConcept C59822182 @default.
- W3134056413 hasConcept C71924100 @default.
- W3134056413 hasConcept C84393581 @default.
- W3134056413 hasConcept C86803240 @default.
- W3134056413 hasConcept C88548481 @default.
- W3134056413 hasConceptScore W3134056413C100701293 @default.
- W3134056413 hasConceptScore W3134056413C106131492 @default.
- W3134056413 hasConceptScore W3134056413C114614502 @default.
- W3134056413 hasConceptScore W3134056413C116390426 @default.
- W3134056413 hasConceptScore W3134056413C119857082 @default.
- W3134056413 hasConceptScore W3134056413C124101348 @default.
- W3134056413 hasConceptScore W3134056413C126322002 @default.
- W3134056413 hasConceptScore W3134056413C149635348 @default.
- W3134056413 hasConceptScore W3134056413C150594956 @default.
- W3134056413 hasConceptScore W3134056413C154945302 @default.
- W3134056413 hasConceptScore W3134056413C164705383 @default.
- W3134056413 hasConceptScore W3134056413C177264268 @default.
- W3134056413 hasConceptScore W3134056413C192943249 @default.
- W3134056413 hasConceptScore W3134056413C199360897 @default.
- W3134056413 hasConceptScore W3134056413C3020404979 @default.