Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134095470> ?p ?o ?g. }
- W3134095470 endingPage "104207" @default.
- W3134095470 startingPage "104207" @default.
- W3134095470 abstract "The growing concerns of companies to economic savings, optimal utilization of resources, and increased environmental protection regulations prompt the manufacturers to be more focused on the recycling of the products that are at the end of their useful life. This study considers a job shop scheduling problem with reverse flows under uncertainty. Since the main parameter of the model (i.e., the processing time of operations) is tainted with a great degree of uncertainty in real-world applications, a robust programming approach is utilized. This paper proposes a computationally efficient model. Due to the complexity and difficulty of solving the presented model, an exact solution method for small-sized instances and simulated annealing (SA) and discrete harmony search (DHS) algorithms for medium- and large-sized instances are proposed. The model performance is evaluated by comparing the computational results with the literature. Furthermore, the performance of the proposed meta-heuristic algorithms is evaluated by comparing the resulted solutions with the exact method for small-sized instances and with three other meta-heuristics algorithms, such as discrete particle swarm optimization (DPSO) and invasive weed optimization (DIWO), and iterated greedy (IG) algorithms, for medium- and large-sized instances. The satisfying results show that the presented model and proposed algorithms ensure good quality solutions within a reasonable time for all test problems and the SA algorithm outperforms the DIWO, DPSO, DHS, and IG algorithms in most cases." @default.
- W3134095470 created "2021-03-15" @default.
- W3134095470 creator A5025555384 @default.
- W3134095470 creator A5032511721 @default.
- W3134095470 creator A5043901748 @default.
- W3134095470 creator A5048668720 @default.
- W3134095470 creator A5054891554 @default.
- W3134095470 date "2021-05-01" @default.
- W3134095470 modified "2023-10-16" @default.
- W3134095470 title "Solving a new robust reverse job shop scheduling problem by meta-heuristic algorithms" @default.
- W3134095470 cites W1976091505 @default.
- W3134095470 cites W1984515446 @default.
- W3134095470 cites W1988591339 @default.
- W3134095470 cites W1990275757 @default.
- W3134095470 cites W1995285162 @default.
- W3134095470 cites W1996913206 @default.
- W3134095470 cites W1998439385 @default.
- W3134095470 cites W2006751452 @default.
- W3134095470 cites W2008321972 @default.
- W3134095470 cites W2024060531 @default.
- W3134095470 cites W2025148441 @default.
- W3134095470 cites W2029126008 @default.
- W3134095470 cites W2030684718 @default.
- W3134095470 cites W2039385547 @default.
- W3134095470 cites W2039538420 @default.
- W3134095470 cites W2039844430 @default.
- W3134095470 cites W2040838500 @default.
- W3134095470 cites W2047207078 @default.
- W3134095470 cites W2059429803 @default.
- W3134095470 cites W2060156946 @default.
- W3134095470 cites W2070389897 @default.
- W3134095470 cites W2076289201 @default.
- W3134095470 cites W2076727278 @default.
- W3134095470 cites W2091417012 @default.
- W3134095470 cites W2102426156 @default.
- W3134095470 cites W2106325815 @default.
- W3134095470 cites W2118578357 @default.
- W3134095470 cites W2135121558 @default.
- W3134095470 cites W2146132986 @default.
- W3134095470 cites W2157513099 @default.
- W3134095470 cites W2157846217 @default.
- W3134095470 cites W2165775468 @default.
- W3134095470 cites W2167378942 @default.
- W3134095470 cites W2170566634 @default.
- W3134095470 cites W2330818462 @default.
- W3134095470 cites W2475309516 @default.
- W3134095470 cites W2479656199 @default.
- W3134095470 cites W2766299898 @default.
- W3134095470 cites W2781894252 @default.
- W3134095470 cites W2808343572 @default.
- W3134095470 cites W2900116312 @default.
- W3134095470 cites W2900621362 @default.
- W3134095470 cites W2900948887 @default.
- W3134095470 cites W2904677875 @default.
- W3134095470 cites W2911787785 @default.
- W3134095470 cites W2931544713 @default.
- W3134095470 cites W2937599159 @default.
- W3134095470 cites W2959554262 @default.
- W3134095470 cites W2964217031 @default.
- W3134095470 cites W2967606169 @default.
- W3134095470 cites W2970875053 @default.
- W3134095470 cites W2978017563 @default.
- W3134095470 cites W2979792994 @default.
- W3134095470 cites W2980905600 @default.
- W3134095470 cites W2989861717 @default.
- W3134095470 cites W2995426862 @default.
- W3134095470 cites W3007178662 @default.
- W3134095470 cites W3033186750 @default.
- W3134095470 cites W3035894786 @default.
- W3134095470 cites W3042720728 @default.
- W3134095470 cites W3047612592 @default.
- W3134095470 cites W3047867360 @default.
- W3134095470 cites W3048171083 @default.
- W3134095470 cites W4243314580 @default.
- W3134095470 doi "https://doi.org/10.1016/j.engappai.2021.104207" @default.
- W3134095470 hasPublicationYear "2021" @default.
- W3134095470 type Work @default.
- W3134095470 sameAs 3134095470 @default.
- W3134095470 citedByCount "8" @default.
- W3134095470 countsByYear W31340954702021 @default.
- W3134095470 countsByYear W31340954702022 @default.
- W3134095470 countsByYear W31340954702023 @default.
- W3134095470 crossrefType "journal-article" @default.
- W3134095470 hasAuthorship W3134095470A5025555384 @default.
- W3134095470 hasAuthorship W3134095470A5032511721 @default.
- W3134095470 hasAuthorship W3134095470A5043901748 @default.
- W3134095470 hasAuthorship W3134095470A5048668720 @default.
- W3134095470 hasAuthorship W3134095470A5054891554 @default.
- W3134095470 hasConcept C109718341 @default.
- W3134095470 hasConcept C111919701 @default.
- W3134095470 hasConcept C11413529 @default.
- W3134095470 hasConcept C126255220 @default.
- W3134095470 hasConcept C127705205 @default.
- W3134095470 hasConcept C154945302 @default.
- W3134095470 hasConcept C33099171 @default.
- W3134095470 hasConcept C33923547 @default.
- W3134095470 hasConcept C41008148 @default.
- W3134095470 hasConcept C55416958 @default.