Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134119957> ?p ?o ?g. }
- W3134119957 endingPage "1792" @default.
- W3134119957 startingPage "1792" @default.
- W3134119957 abstract "Two of the biggest challenges in building models for detecting emotions from electroencephalography (EEG) devices are the relatively small amount of labeled samples and the strong variability of signal feature distributions between different subjects. In this study, we propose a context-generalized model that tackles the data constraints and subject variability simultaneously using a deep neural network architecture optimized for normally distributed subject-independent feature embeddings. Variational autoencoders (VAEs) at the input level allow the lower feature layers of the model to be trained on both labeled and unlabeled samples, maximizing the use of the limited data resources. Meanwhile, variational regularization encourages the model to learn Gaussian-distributed feature embeddings, resulting in robustness to small dataset imbalances. Subject-adversarial regularization applied to the bi-lateral features further enforces subject-independence on the final feature embedding used for emotion classification. The results from subject-independent performance experiments on the SEED and DEAP EEG-emotion datasets show that our model generalizes better across subjects than other state-of-the-art feature embeddings when paired with deep learning classifiers. Furthermore, qualitative analysis of the embedding space reveals that our proposed subject-invariant bi-lateral variational domain adversarial neural network (BiVDANN) architecture may improve the subject-independent performance by discovering normally distributed features." @default.
- W3134119957 created "2021-03-15" @default.
- W3134119957 creator A5002214819 @default.
- W3134119957 creator A5031412686 @default.
- W3134119957 creator A5062784549 @default.
- W3134119957 creator A5075653507 @default.
- W3134119957 date "2021-03-04" @default.
- W3134119957 modified "2023-09-23" @default.
- W3134119957 title "Learning Subject-Generalized Topographical EEG Embeddings Using Deep Variational Autoencoders and Domain-Adversarial Regularization" @default.
- W3134119957 cites W1947251450 @default.
- W3134119957 cites W1971274817 @default.
- W3134119957 cites W2000982976 @default.
- W3134119957 cites W2002055708 @default.
- W3134119957 cites W2115403315 @default.
- W3134119957 cites W2135595031 @default.
- W3134119957 cites W2136485397 @default.
- W3134119957 cites W2139564752 @default.
- W3134119957 cites W2140095548 @default.
- W3134119957 cites W2144053378 @default.
- W3134119957 cites W2169918686 @default.
- W3134119957 cites W2278113816 @default.
- W3134119957 cites W2537229885 @default.
- W3134119957 cites W2579628011 @default.
- W3134119957 cites W2741907166 @default.
- W3134119957 cites W2749183303 @default.
- W3134119957 cites W2786808285 @default.
- W3134119957 cites W2794345050 @default.
- W3134119957 cites W2799657112 @default.
- W3134119957 cites W2889895098 @default.
- W3134119957 cites W2903959724 @default.
- W3134119957 cites W2911969890 @default.
- W3134119957 cites W2948978827 @default.
- W3134119957 cites W2963355311 @default.
- W3134119957 cites W2964020599 @default.
- W3134119957 cites W2982126608 @default.
- W3134119957 cites W2985653130 @default.
- W3134119957 cites W3014215018 @default.
- W3134119957 cites W3033046106 @default.
- W3134119957 cites W3039883906 @default.
- W3134119957 cites W3083218890 @default.
- W3134119957 cites W3101749733 @default.
- W3134119957 cites W3102455230 @default.
- W3134119957 doi "https://doi.org/10.3390/s21051792" @default.
- W3134119957 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7961341" @default.
- W3134119957 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33806712" @default.
- W3134119957 hasPublicationYear "2021" @default.
- W3134119957 type Work @default.
- W3134119957 sameAs 3134119957 @default.
- W3134119957 citedByCount "7" @default.
- W3134119957 countsByYear W31341199572021 @default.
- W3134119957 countsByYear W31341199572022 @default.
- W3134119957 countsByYear W31341199572023 @default.
- W3134119957 crossrefType "journal-article" @default.
- W3134119957 hasAuthorship W3134119957A5002214819 @default.
- W3134119957 hasAuthorship W3134119957A5031412686 @default.
- W3134119957 hasAuthorship W3134119957A5062784549 @default.
- W3134119957 hasAuthorship W3134119957A5075653507 @default.
- W3134119957 hasBestOaLocation W31341199571 @default.
- W3134119957 hasConcept C108583219 @default.
- W3134119957 hasConcept C119857082 @default.
- W3134119957 hasConcept C138885662 @default.
- W3134119957 hasConcept C153180895 @default.
- W3134119957 hasConcept C154945302 @default.
- W3134119957 hasConcept C2776135515 @default.
- W3134119957 hasConcept C2776401178 @default.
- W3134119957 hasConcept C41008148 @default.
- W3134119957 hasConcept C41608201 @default.
- W3134119957 hasConcept C41895202 @default.
- W3134119957 hasConcept C50644808 @default.
- W3134119957 hasConcept C83665646 @default.
- W3134119957 hasConceptScore W3134119957C108583219 @default.
- W3134119957 hasConceptScore W3134119957C119857082 @default.
- W3134119957 hasConceptScore W3134119957C138885662 @default.
- W3134119957 hasConceptScore W3134119957C153180895 @default.
- W3134119957 hasConceptScore W3134119957C154945302 @default.
- W3134119957 hasConceptScore W3134119957C2776135515 @default.
- W3134119957 hasConceptScore W3134119957C2776401178 @default.
- W3134119957 hasConceptScore W3134119957C41008148 @default.
- W3134119957 hasConceptScore W3134119957C41608201 @default.
- W3134119957 hasConceptScore W3134119957C41895202 @default.
- W3134119957 hasConceptScore W3134119957C50644808 @default.
- W3134119957 hasConceptScore W3134119957C83665646 @default.
- W3134119957 hasIssue "5" @default.
- W3134119957 hasLocation W31341199571 @default.
- W3134119957 hasLocation W31341199572 @default.
- W3134119957 hasLocation W31341199573 @default.
- W3134119957 hasOpenAccess W3134119957 @default.
- W3134119957 hasPrimaryLocation W31341199571 @default.
- W3134119957 hasRelatedWork W2795261237 @default.
- W3134119957 hasRelatedWork W3014300295 @default.
- W3134119957 hasRelatedWork W3164822677 @default.
- W3134119957 hasRelatedWork W4223943233 @default.
- W3134119957 hasRelatedWork W4225161397 @default.
- W3134119957 hasRelatedWork W4312200629 @default.
- W3134119957 hasRelatedWork W4360585206 @default.
- W3134119957 hasRelatedWork W4364306694 @default.
- W3134119957 hasRelatedWork W4380075502 @default.
- W3134119957 hasRelatedWork W4380086463 @default.