Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134123219> ?p ?o ?g. }
- W3134123219 abstract "Abstract The spatiotemporal concentration of multiple pollutants is crucial information for pollution control strategies to safeguard public health. Despite considerable efforts, however, significant uncertainty remains. In this study, a three‐dimensional variational model is coupled with a data assimilation (DA) system to analyze the spatiotemporal variation of PM 2.5 for the whole of China. Monthly simulations of six sensitivity scenarios in different seasons, including different assimilation cycles, are carried out to assess the impact of the assimilation frequency on the PM 2.5 simulations and the model simulation accuracy afforded by DA. The results show that the coupled system provides more reliable initial fields to substantially improve the model performance for PM 2.5 , PM 10 , and O 3 . Higher assimilation frequency improves the simulation in all geographic areas. Two statistical indicators—the root mean square error and the correlation coefficient of PM 2.5 mass concentrations in the analysis field—are improved by 12.19 µg/m 3 (33%) and 0.21 (48%), respectively. Although the 24‐h assimilation cycle considerably improves the model, assimilation at a 6‐h cycle raises the performance for PM 2.5 to the performance goal level. The analysis shows that assimilating at a 24‐h cycle diminishes over time, whereas the positive impact of the 6‐h cycle persists. One pivotal finding is that the assimilation of PM 2.5 in the outermost domain results in a substantial improvement in PM 2.5 prediction for the innermost domain, which is a potential alternative method to the existing domain‐wide data fusion algorithm. The effect of assimilation varies among topographies, a finding that provides essential support for further model development." @default.
- W3134123219 created "2021-03-15" @default.
- W3134123219 creator A5039758955 @default.
- W3134123219 creator A5043773772 @default.
- W3134123219 creator A5056499019 @default.
- W3134123219 creator A5061091586 @default.
- W3134123219 creator A5084552336 @default.
- W3134123219 date "2021-03-23" @default.
- W3134123219 modified "2023-09-29" @default.
- W3134123219 title "Improved Modeling of Spatiotemporal Variations of Fine Particulate Matter Using a Three‐Dimensional Variational Data Fusion Method" @default.
- W3134123219 cites W1500371118 @default.
- W3134123219 cites W1665036207 @default.
- W3134123219 cites W1902179277 @default.
- W3134123219 cites W1904528511 @default.
- W3134123219 cites W1954171528 @default.
- W3134123219 cites W1981220747 @default.
- W3134123219 cites W2000809920 @default.
- W3134123219 cites W2004431879 @default.
- W3134123219 cites W2004849950 @default.
- W3134123219 cites W2015698815 @default.
- W3134123219 cites W2041621735 @default.
- W3134123219 cites W2045533708 @default.
- W3134123219 cites W2059584473 @default.
- W3134123219 cites W2068610808 @default.
- W3134123219 cites W2069741655 @default.
- W3134123219 cites W2072139621 @default.
- W3134123219 cites W2076084454 @default.
- W3134123219 cites W2092600363 @default.
- W3134123219 cites W2109612907 @default.
- W3134123219 cites W2172819965 @default.
- W3134123219 cites W2212118466 @default.
- W3134123219 cites W2262384140 @default.
- W3134123219 cites W2322236889 @default.
- W3134123219 cites W2340400090 @default.
- W3134123219 cites W2517518714 @default.
- W3134123219 cites W2554285426 @default.
- W3134123219 cites W2560450888 @default.
- W3134123219 cites W2566321408 @default.
- W3134123219 cites W2575591472 @default.
- W3134123219 cites W2599240383 @default.
- W3134123219 cites W2778350156 @default.
- W3134123219 cites W2804167109 @default.
- W3134123219 cites W2886370133 @default.
- W3134123219 cites W2890116680 @default.
- W3134123219 cites W2896608465 @default.
- W3134123219 cites W2904851601 @default.
- W3134123219 cites W2906174845 @default.
- W3134123219 cites W2907860536 @default.
- W3134123219 cites W2939064738 @default.
- W3134123219 cites W2940571302 @default.
- W3134123219 cites W2949220266 @default.
- W3134123219 cites W2972551381 @default.
- W3134123219 cites W2975749068 @default.
- W3134123219 cites W2988972072 @default.
- W3134123219 cites W2997577051 @default.
- W3134123219 cites W3000007695 @default.
- W3134123219 cites W3008859387 @default.
- W3134123219 cites W3009105232 @default.
- W3134123219 cites W3015357459 @default.
- W3134123219 cites W3016237013 @default.
- W3134123219 cites W3017122993 @default.
- W3134123219 cites W3037199646 @default.
- W3134123219 cites W3093326626 @default.
- W3134123219 cites W3095167147 @default.
- W3134123219 cites W3117689172 @default.
- W3134123219 doi "https://doi.org/10.1029/2020jd033599" @default.
- W3134123219 hasPublicationYear "2021" @default.
- W3134123219 type Work @default.
- W3134123219 sameAs 3134123219 @default.
- W3134123219 citedByCount "3" @default.
- W3134123219 countsByYear W31341232192022 @default.
- W3134123219 countsByYear W31341232192023 @default.
- W3134123219 crossrefType "journal-article" @default.
- W3134123219 hasAuthorship W3134123219A5039758955 @default.
- W3134123219 hasAuthorship W3134123219A5043773772 @default.
- W3134123219 hasAuthorship W3134123219A5056499019 @default.
- W3134123219 hasAuthorship W3134123219A5061091586 @default.
- W3134123219 hasAuthorship W3134123219A5084552336 @default.
- W3134123219 hasConcept C105795698 @default.
- W3134123219 hasConcept C121332964 @default.
- W3134123219 hasConcept C138885662 @default.
- W3134123219 hasConcept C139945424 @default.
- W3134123219 hasConcept C153294291 @default.
- W3134123219 hasConcept C178790620 @default.
- W3134123219 hasConcept C185592680 @default.
- W3134123219 hasConcept C18903297 @default.
- W3134123219 hasConcept C24245907 @default.
- W3134123219 hasConcept C24552861 @default.
- W3134123219 hasConcept C2780092901 @default.
- W3134123219 hasConcept C33923547 @default.
- W3134123219 hasConcept C39432304 @default.
- W3134123219 hasConcept C41008148 @default.
- W3134123219 hasConcept C41895202 @default.
- W3134123219 hasConcept C521259446 @default.
- W3134123219 hasConcept C75649859 @default.
- W3134123219 hasConcept C86803240 @default.
- W3134123219 hasConcept C91586092 @default.
- W3134123219 hasConceptScore W3134123219C105795698 @default.
- W3134123219 hasConceptScore W3134123219C121332964 @default.
- W3134123219 hasConceptScore W3134123219C138885662 @default.