Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134160156> ?p ?o ?g. }
- W3134160156 abstract "Resting state functional magnetic resonance imaging (rsfMRI), and the underlying brain networks identified with it, have recently appeared as a promising avenue for the evaluation of functional deficits without the need for active patient participation. We hypothesize here that such alteration can be inferred from tissue damage within the network. From an engineering perspective, the numerical prediction of tissue mechanical damage following an impact remains computationally expensive. To this end, we propose a numerical framework aimed at predicting resting state network disruption for an arbitrary head impact, as described by the head velocity, location and angle of impact, and impactor shape. The proposed method uses a library of precalculated cases leveraged by a machine learning layer for efficient and quick prediction. The accuracy of the machine learning layer is illustrated with a dummy fall case, where the machine learning prediction is shown to closely match the full simulation results. The resulting framework is finally tested against the rsfMRI data of nine TBI patients scanned within 24 h of injury, for which paramedical information was used to reconstruct in silico the accident. While more clinical data are required for full validation, this approach opens the door to (i) on-the-fly prediction of rsfMRI alterations, readily measurable on clinical premises from paramedical data, and (ii) reverse-engineered accident reconstruction through rsfMRI measurements." @default.
- W3134160156 created "2021-03-15" @default.
- W3134160156 creator A5019309569 @default.
- W3134160156 creator A5031742616 @default.
- W3134160156 creator A5059599386 @default.
- W3134160156 creator A5064290966 @default.
- W3134160156 creator A5068828321 @default.
- W3134160156 creator A5076464903 @default.
- W3134160156 creator A5089288693 @default.
- W3134160156 date "2021-03-03" @default.
- W3134160156 modified "2023-10-18" @default.
- W3134160156 title "A Machine Learning Enhanced Mechanistic Simulation Framework for Functional Deficit Prediction in TBI" @default.
- W3134160156 cites W1481358246 @default.
- W3134160156 cites W1534477342 @default.
- W3134160156 cites W1970115654 @default.
- W3134160156 cites W1970695058 @default.
- W3134160156 cites W1974769230 @default.
- W3134160156 cites W1979227027 @default.
- W3134160156 cites W1996020380 @default.
- W3134160156 cites W1996405315 @default.
- W3134160156 cites W2001619934 @default.
- W3134160156 cites W2009105636 @default.
- W3134160156 cites W2019450648 @default.
- W3134160156 cites W2020214980 @default.
- W3134160156 cites W2022616811 @default.
- W3134160156 cites W2024729467 @default.
- W3134160156 cites W2032026767 @default.
- W3134160156 cites W2040128596 @default.
- W3134160156 cites W2042933433 @default.
- W3134160156 cites W2046557060 @default.
- W3134160156 cites W2066450038 @default.
- W3134160156 cites W2067345938 @default.
- W3134160156 cites W2067448822 @default.
- W3134160156 cites W2070921889 @default.
- W3134160156 cites W2073983526 @default.
- W3134160156 cites W2076750015 @default.
- W3134160156 cites W2078368881 @default.
- W3134160156 cites W2078597721 @default.
- W3134160156 cites W2079450984 @default.
- W3134160156 cites W2081530790 @default.
- W3134160156 cites W2087347434 @default.
- W3134160156 cites W2092431336 @default.
- W3134160156 cites W2096859537 @default.
- W3134160156 cites W2103367163 @default.
- W3134160156 cites W2105876678 @default.
- W3134160156 cites W2107605895 @default.
- W3134160156 cites W2109806433 @default.
- W3134160156 cites W2111176588 @default.
- W3134160156 cites W2122111042 @default.
- W3134160156 cites W2123055367 @default.
- W3134160156 cites W2126693856 @default.
- W3134160156 cites W2136573752 @default.
- W3134160156 cites W2143812931 @default.
- W3134160156 cites W2144827143 @default.
- W3134160156 cites W2162010696 @default.
- W3134160156 cites W2166254791 @default.
- W3134160156 cites W2168056663 @default.
- W3134160156 cites W2170714926 @default.
- W3134160156 cites W2295745326 @default.
- W3134160156 cites W2299938037 @default.
- W3134160156 cites W2358610562 @default.
- W3134160156 cites W2530453092 @default.
- W3134160156 cites W2570924978 @default.
- W3134160156 cites W2605739527 @default.
- W3134160156 cites W2745440543 @default.
- W3134160156 cites W2750840784 @default.
- W3134160156 cites W2767415790 @default.
- W3134160156 cites W2775232250 @default.
- W3134160156 cites W2804500674 @default.
- W3134160156 cites W2811169535 @default.
- W3134160156 cites W2946628383 @default.
- W3134160156 cites W2963981679 @default.
- W3134160156 cites W2991641166 @default.
- W3134160156 cites W3092082948 @default.
- W3134160156 cites W4212883601 @default.
- W3134160156 doi "https://doi.org/10.3389/fbioe.2021.587082" @default.
- W3134160156 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7965982" @default.
- W3134160156 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33748080" @default.
- W3134160156 hasPublicationYear "2021" @default.
- W3134160156 type Work @default.
- W3134160156 sameAs 3134160156 @default.
- W3134160156 citedByCount "6" @default.
- W3134160156 countsByYear W31341601562021 @default.
- W3134160156 countsByYear W31341601562022 @default.
- W3134160156 countsByYear W31341601562023 @default.
- W3134160156 crossrefType "journal-article" @default.
- W3134160156 hasAuthorship W3134160156A5019309569 @default.
- W3134160156 hasAuthorship W3134160156A5031742616 @default.
- W3134160156 hasAuthorship W3134160156A5059599386 @default.
- W3134160156 hasAuthorship W3134160156A5064290966 @default.
- W3134160156 hasAuthorship W3134160156A5068828321 @default.
- W3134160156 hasAuthorship W3134160156A5076464903 @default.
- W3134160156 hasAuthorship W3134160156A5089288693 @default.
- W3134160156 hasBestOaLocation W31341601561 @default.
- W3134160156 hasConcept C108583219 @default.
- W3134160156 hasConcept C119857082 @default.
- W3134160156 hasConcept C12713177 @default.
- W3134160156 hasConcept C154945302 @default.
- W3134160156 hasConcept C169760540 @default.
- W3134160156 hasConcept C2779226451 @default.