Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134202499> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3134202499 endingPage "315" @default.
- W3134202499 startingPage "315" @default.
- W3134202499 abstract "Health risks connected with fine particulate matter (PM2.5) pollutants are well documented; increased risks of asthma, heart attack and heart failure are a few of the effects associated with PM2.5. Accurately forecasting PM2.5 is crucial for state agencies directed to devise State Implementation Plans (SIPS) to deal with National Ambient Air Quality Standards (NAAQS) exceedances. In previous work, we explored the application of multi-temporal data-driven neural networks (NNs) to forecasting PM2.5. Our work showed that under different input conditions, the NN approach achieves higher forecasting scores for local (12 km) resolution when compared to the other Chemical Transport Model forecast models, such as the Community Multi-Scale Air Quality system (CMAQ). Critical to our approach was the inclusion of prior PM2.5 concentrations, retrieved from ground monitoring stations, as part of the input dataset for the NN. The NN approach can provide high-level forecasting accuracy; however, because of the dependency on ground monitoring stations, the forecast coverage is sparse. Here, we extend our previous station-specific efforts by forecasting hourly PM2.5 values that are spatially continuous through the use of a deep neural network (DNN). The DNN approach combines spatial Kriging with additional local source variables to interpolate the measured PM2.5 concentrations across non-station locations. These interpolated PM2.5 values are used as inputs in the original forecasting NN. Cross-validation testing, using all New York State AirNow PM2.5 stations, showed that this forecast approach achieves accurate results, with a regression coefficient (R2) of 0.59, and a root mean square error (RMSE) of 2.22μgm3. Additionally, herein we demonstrate the usefulness of this approach on specific temporal events where significant dynamics of PM2.5 were observed; particularly, we show that even bias-corrected CMAQ forecasts do not track these transients and our NN method." @default.
- W3134202499 created "2021-03-15" @default.
- W3134202499 creator A5015926473 @default.
- W3134202499 creator A5030480168 @default.
- W3134202499 creator A5063119844 @default.
- W3134202499 creator A5065395392 @default.
- W3134202499 date "2021-02-28" @default.
- W3134202499 modified "2023-10-18" @default.
- W3134202499 title "Development and Assessment of Spatially Continuous Predictive Algorithms for Fine Particulate Matter in New York State" @default.
- W3134202499 cites W1968840994 @default.
- W3134202499 cites W1969296254 @default.
- W3134202499 cites W1976991085 @default.
- W3134202499 cites W1989714516 @default.
- W3134202499 cites W1997829466 @default.
- W3134202499 cites W2008641894 @default.
- W3134202499 cites W2027641626 @default.
- W3134202499 cites W2057829983 @default.
- W3134202499 cites W2067129339 @default.
- W3134202499 cites W2102093423 @default.
- W3134202499 cites W2108162680 @default.
- W3134202499 cites W2140282454 @default.
- W3134202499 cites W2157539394 @default.
- W3134202499 cites W2166604768 @default.
- W3134202499 cites W2297827415 @default.
- W3134202499 cites W2476889144 @default.
- W3134202499 cites W2510416374 @default.
- W3134202499 cites W2593374428 @default.
- W3134202499 cites W2752073115 @default.
- W3134202499 cites W3122817556 @default.
- W3134202499 doi "https://doi.org/10.3390/atmos12030315" @default.
- W3134202499 hasPublicationYear "2021" @default.
- W3134202499 type Work @default.
- W3134202499 sameAs 3134202499 @default.
- W3134202499 citedByCount "4" @default.
- W3134202499 countsByYear W31342024992022 @default.
- W3134202499 countsByYear W31342024992023 @default.
- W3134202499 crossrefType "journal-article" @default.
- W3134202499 hasAuthorship W3134202499A5015926473 @default.
- W3134202499 hasAuthorship W3134202499A5030480168 @default.
- W3134202499 hasAuthorship W3134202499A5063119844 @default.
- W3134202499 hasAuthorship W3134202499A5065395392 @default.
- W3134202499 hasBestOaLocation W31342024991 @default.
- W3134202499 hasConcept C11413529 @default.
- W3134202499 hasConcept C119857082 @default.
- W3134202499 hasConcept C121332964 @default.
- W3134202499 hasConcept C124101348 @default.
- W3134202499 hasConcept C126314574 @default.
- W3134202499 hasConcept C153294291 @default.
- W3134202499 hasConcept C18903297 @default.
- W3134202499 hasConcept C24245907 @default.
- W3134202499 hasConcept C2776845762 @default.
- W3134202499 hasConcept C39432304 @default.
- W3134202499 hasConcept C41008148 @default.
- W3134202499 hasConcept C50644808 @default.
- W3134202499 hasConcept C81692654 @default.
- W3134202499 hasConcept C86803240 @default.
- W3134202499 hasConceptScore W3134202499C11413529 @default.
- W3134202499 hasConceptScore W3134202499C119857082 @default.
- W3134202499 hasConceptScore W3134202499C121332964 @default.
- W3134202499 hasConceptScore W3134202499C124101348 @default.
- W3134202499 hasConceptScore W3134202499C126314574 @default.
- W3134202499 hasConceptScore W3134202499C153294291 @default.
- W3134202499 hasConceptScore W3134202499C18903297 @default.
- W3134202499 hasConceptScore W3134202499C24245907 @default.
- W3134202499 hasConceptScore W3134202499C2776845762 @default.
- W3134202499 hasConceptScore W3134202499C39432304 @default.
- W3134202499 hasConceptScore W3134202499C41008148 @default.
- W3134202499 hasConceptScore W3134202499C50644808 @default.
- W3134202499 hasConceptScore W3134202499C81692654 @default.
- W3134202499 hasConceptScore W3134202499C86803240 @default.
- W3134202499 hasIssue "3" @default.
- W3134202499 hasLocation W31342024991 @default.
- W3134202499 hasLocation W31342024992 @default.
- W3134202499 hasOpenAccess W3134202499 @default.
- W3134202499 hasPrimaryLocation W31342024991 @default.
- W3134202499 hasRelatedWork W1662412680 @default.
- W3134202499 hasRelatedWork W1983378774 @default.
- W3134202499 hasRelatedWork W2155690850 @default.
- W3134202499 hasRelatedWork W2188077330 @default.
- W3134202499 hasRelatedWork W30862595 @default.
- W3134202499 hasRelatedWork W3110040737 @default.
- W3134202499 hasRelatedWork W3146463075 @default.
- W3134202499 hasRelatedWork W4224309778 @default.
- W3134202499 hasRelatedWork W4229994787 @default.
- W3134202499 hasRelatedWork W614657272 @default.
- W3134202499 hasVolume "12" @default.
- W3134202499 isParatext "false" @default.
- W3134202499 isRetracted "false" @default.
- W3134202499 magId "3134202499" @default.
- W3134202499 workType "article" @default.