Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134241006> ?p ?o ?g. }
- W3134241006 endingPage "24" @default.
- W3134241006 startingPage "1" @default.
- W3134241006 abstract "The processing of data-intensive workloads is a challenging and time-consuming task that often requires massive infrastructure to ensure fast data analysis. The cloud platform is the most popular and powerful scale-out infrastructure to perform big data analytics and eliminate the need to maintain expensive and high-end computing resources at the user side. The performance and the cost of such infrastructure depend on the overall server configuration, such as processor, memory, network, and storage configurations. In addition to the cost of owning or maintaining the hardware, the heterogeneity in the server configuration further expands the selection space, leading to non-convergence. The challenge is further exacerbated by the dependency of the application’s performance on the underlying hardware. Despite an increasing interest in resource provisioning, few works have been done to develop accurate and practical models to proactively predict the performance of data-intensive applications corresponding to the server configuration and provision a cost-optimal configuration online. In this work, through a comprehensive real-system empirical analysis of performance, we address these challenges by introducing ProMLB: a proactive machine-learning-based methodology for resource provisioning. We first characterize diverse types of data-intensive workloads across different types of server architectures. The characterization aids in accurately capture applications’ behavior and train a model for prediction of their performance. Then, ProMLB builds a set of cross-platform performance models for each application. Based on the developed predictive model, ProMLB uses an optimization technique to distinguish close-to-optimal configuration to minimize the product of execution time and cost. Compared to the oracle scheduler, ProMLB achieves 91% accuracy in terms of application-resource matching. On average, ProMLB improves the performance and resource utilization by 42.6% and 41.1%, respectively, compared to baseline scheduler. Moreover, ProMLB improves the performance per cost by 2.5× on average." @default.
- W3134241006 created "2021-03-15" @default.
- W3134241006 creator A5006916773 @default.
- W3134241006 creator A5047382437 @default.
- W3134241006 creator A5049559941 @default.
- W3134241006 creator A5051940611 @default.
- W3134241006 creator A5052073496 @default.
- W3134241006 creator A5060036961 @default.
- W3134241006 creator A5080844858 @default.
- W3134241006 creator A5084010501 @default.
- W3134241006 date "2020-12-31" @default.
- W3134241006 modified "2023-10-16" @default.
- W3134241006 title "Adaptive Performance Modeling of Data-intensive Workloads for Resource Provisioning in Virtualized Environment" @default.
- W3134241006 cites W2013062050 @default.
- W3134241006 cites W2028380761 @default.
- W3134241006 cites W2035527858 @default.
- W3134241006 cites W2036895660 @default.
- W3134241006 cites W2078965963 @default.
- W3134241006 cites W2104105007 @default.
- W3134241006 cites W2107894622 @default.
- W3134241006 cites W2109574129 @default.
- W3134241006 cites W2117014758 @default.
- W3134241006 cites W2129753516 @default.
- W3134241006 cites W2141563029 @default.
- W3134241006 cites W2155072926 @default.
- W3134241006 cites W2607281691 @default.
- W3134241006 cites W2774520902 @default.
- W3134241006 cites W2789968259 @default.
- W3134241006 cites W2792529086 @default.
- W3134241006 cites W2856555045 @default.
- W3134241006 cites W2893549539 @default.
- W3134241006 cites W2906946779 @default.
- W3134241006 cites W2909273911 @default.
- W3134241006 cites W2911026747 @default.
- W3134241006 cites W2945027786 @default.
- W3134241006 cites W2962760064 @default.
- W3134241006 cites W2964002943 @default.
- W3134241006 cites W2981954928 @default.
- W3134241006 cites W2997451313 @default.
- W3134241006 cites W2997903470 @default.
- W3134241006 cites W3025026172 @default.
- W3134241006 cites W3104569204 @default.
- W3134241006 cites W3132668218 @default.
- W3134241006 cites W4230432948 @default.
- W3134241006 cites W4236491543 @default.
- W3134241006 cites W4249320082 @default.
- W3134241006 cites W4253824360 @default.
- W3134241006 cites W4256383029 @default.
- W3134241006 cites W4256410609 @default.
- W3134241006 doi "https://doi.org/10.1145/3442696" @default.
- W3134241006 hasPublicationYear "2020" @default.
- W3134241006 type Work @default.
- W3134241006 sameAs 3134241006 @default.
- W3134241006 citedByCount "10" @default.
- W3134241006 countsByYear W31342410062021 @default.
- W3134241006 countsByYear W31342410062022 @default.
- W3134241006 countsByYear W31342410062023 @default.
- W3134241006 crossrefType "journal-article" @default.
- W3134241006 hasAuthorship W3134241006A5006916773 @default.
- W3134241006 hasAuthorship W3134241006A5047382437 @default.
- W3134241006 hasAuthorship W3134241006A5049559941 @default.
- W3134241006 hasAuthorship W3134241006A5051940611 @default.
- W3134241006 hasAuthorship W3134241006A5052073496 @default.
- W3134241006 hasAuthorship W3134241006A5060036961 @default.
- W3134241006 hasAuthorship W3134241006A5080844858 @default.
- W3134241006 hasAuthorship W3134241006A5084010501 @default.
- W3134241006 hasConcept C111919701 @default.
- W3134241006 hasConcept C120314980 @default.
- W3134241006 hasConcept C162324750 @default.
- W3134241006 hasConcept C172191483 @default.
- W3134241006 hasConcept C187736073 @default.
- W3134241006 hasConcept C206345919 @default.
- W3134241006 hasConcept C2780451532 @default.
- W3134241006 hasConcept C31258907 @default.
- W3134241006 hasConcept C41008148 @default.
- W3134241006 hasConcept C75684735 @default.
- W3134241006 hasConcept C79974875 @default.
- W3134241006 hasConceptScore W3134241006C111919701 @default.
- W3134241006 hasConceptScore W3134241006C120314980 @default.
- W3134241006 hasConceptScore W3134241006C162324750 @default.
- W3134241006 hasConceptScore W3134241006C172191483 @default.
- W3134241006 hasConceptScore W3134241006C187736073 @default.
- W3134241006 hasConceptScore W3134241006C206345919 @default.
- W3134241006 hasConceptScore W3134241006C2780451532 @default.
- W3134241006 hasConceptScore W3134241006C31258907 @default.
- W3134241006 hasConceptScore W3134241006C41008148 @default.
- W3134241006 hasConceptScore W3134241006C75684735 @default.
- W3134241006 hasConceptScore W3134241006C79974875 @default.
- W3134241006 hasIssue "4" @default.
- W3134241006 hasLocation W31342410061 @default.
- W3134241006 hasOpenAccess W3134241006 @default.
- W3134241006 hasPrimaryLocation W31342410061 @default.
- W3134241006 hasRelatedWork W2022022889 @default.
- W3134241006 hasRelatedWork W2025852542 @default.
- W3134241006 hasRelatedWork W2460961301 @default.
- W3134241006 hasRelatedWork W2560090078 @default.
- W3134241006 hasRelatedWork W2799273447 @default.
- W3134241006 hasRelatedWork W2905824599 @default.