Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134250049> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3134250049 abstract "Faced with the various colorful items on the ecommerce platforms, it becomes a problem that how to effectively match the items to those who need. An indispensable tool for solving the problem above is recommendation system. Focusing on the massive data faced by the current recommendation algorithms, the sparse user-project interaction matrix, the cold start of new items and users, and this paper proposes an effective neural network-based recommendation model. Firstly, the user-item scoring matrix is constructed and filled to alleviate the sparseness problem. Secondly, the user and item rating eigenvector are extracted by matrix decomposition, whiles text eigenvectors are obtained by using text description information. Furthermore, user and item feature vectors are constructed by rating features and text features together. Finally, the constructed eigenvector of users and items are used as input to the long short-term memory (LSTM). The eigenvectors of users and items are trained, and the output of the LSTM network is processed by multi-layer perception (MLP) to predict the correlation between users and projects. The experimental and comparative results show that the proposed model can effectively alleviate the cold start problem of projects and users, and improve the recommendation performance." @default.
- W3134250049 created "2021-03-15" @default.
- W3134250049 creator A5014887679 @default.
- W3134250049 creator A5015860750 @default.
- W3134250049 creator A5070468133 @default.
- W3134250049 date "2020-11-27" @default.
- W3134250049 modified "2023-09-27" @default.
- W3134250049 title "FFDNN: Feature Fusion Depth Neural Network Model of Recommendation System" @default.
- W3134250049 cites W1689711448 @default.
- W3134250049 cites W2055981215 @default.
- W3134250049 cites W2056738732 @default.
- W3134250049 cites W2131772950 @default.
- W3134250049 cites W2253995343 @default.
- W3134250049 cites W2390418886 @default.
- W3134250049 cites W2533696134 @default.
- W3134250049 cites W2740920897 @default.
- W3134250049 cites W2763433602 @default.
- W3134250049 cites W2767669124 @default.
- W3134250049 cites W2769588344 @default.
- W3134250049 cites W2781636776 @default.
- W3134250049 cites W2806277834 @default.
- W3134250049 cites W2937358712 @default.
- W3134250049 cites W2967481075 @default.
- W3134250049 cites W3001811841 @default.
- W3134250049 cites W3005990295 @default.
- W3134250049 cites W3035059451 @default.
- W3134250049 cites W3037210629 @default.
- W3134250049 cites W3117756155 @default.
- W3134250049 doi "https://doi.org/10.1109/itia50152.2020.9312313" @default.
- W3134250049 hasPublicationYear "2020" @default.
- W3134250049 type Work @default.
- W3134250049 sameAs 3134250049 @default.
- W3134250049 citedByCount "0" @default.
- W3134250049 crossrefType "proceedings-article" @default.
- W3134250049 hasAuthorship W3134250049A5014887679 @default.
- W3134250049 hasAuthorship W3134250049A5015860750 @default.
- W3134250049 hasAuthorship W3134250049A5070468133 @default.
- W3134250049 hasConcept C119857082 @default.
- W3134250049 hasConcept C121332964 @default.
- W3134250049 hasConcept C124101348 @default.
- W3134250049 hasConcept C124681953 @default.
- W3134250049 hasConcept C138885662 @default.
- W3134250049 hasConcept C154945302 @default.
- W3134250049 hasConcept C158693339 @default.
- W3134250049 hasConcept C18903297 @default.
- W3134250049 hasConcept C23123220 @default.
- W3134250049 hasConcept C2776401178 @default.
- W3134250049 hasConcept C41008148 @default.
- W3134250049 hasConcept C41895202 @default.
- W3134250049 hasConcept C42355184 @default.
- W3134250049 hasConcept C50644808 @default.
- W3134250049 hasConcept C557471498 @default.
- W3134250049 hasConcept C62520636 @default.
- W3134250049 hasConcept C86803240 @default.
- W3134250049 hasConceptScore W3134250049C119857082 @default.
- W3134250049 hasConceptScore W3134250049C121332964 @default.
- W3134250049 hasConceptScore W3134250049C124101348 @default.
- W3134250049 hasConceptScore W3134250049C124681953 @default.
- W3134250049 hasConceptScore W3134250049C138885662 @default.
- W3134250049 hasConceptScore W3134250049C154945302 @default.
- W3134250049 hasConceptScore W3134250049C158693339 @default.
- W3134250049 hasConceptScore W3134250049C18903297 @default.
- W3134250049 hasConceptScore W3134250049C23123220 @default.
- W3134250049 hasConceptScore W3134250049C2776401178 @default.
- W3134250049 hasConceptScore W3134250049C41008148 @default.
- W3134250049 hasConceptScore W3134250049C41895202 @default.
- W3134250049 hasConceptScore W3134250049C42355184 @default.
- W3134250049 hasConceptScore W3134250049C50644808 @default.
- W3134250049 hasConceptScore W3134250049C557471498 @default.
- W3134250049 hasConceptScore W3134250049C62520636 @default.
- W3134250049 hasConceptScore W3134250049C86803240 @default.
- W3134250049 hasLocation W31342500491 @default.
- W3134250049 hasOpenAccess W3134250049 @default.
- W3134250049 hasPrimaryLocation W31342500491 @default.
- W3134250049 hasRelatedWork W12165144 @default.
- W3134250049 hasRelatedWork W13357224 @default.
- W3134250049 hasRelatedWork W14516383 @default.
- W3134250049 hasRelatedWork W3904675 @default.
- W3134250049 hasRelatedWork W5384379 @default.
- W3134250049 hasRelatedWork W5394458 @default.
- W3134250049 hasRelatedWork W5983547 @default.
- W3134250049 hasRelatedWork W628035 @default.
- W3134250049 hasRelatedWork W7314787 @default.
- W3134250049 hasRelatedWork W1916988 @default.
- W3134250049 isParatext "false" @default.
- W3134250049 isRetracted "false" @default.
- W3134250049 magId "3134250049" @default.
- W3134250049 workType "article" @default.