Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134276259> ?p ?o ?g. }
- W3134276259 abstract "Abstract Atom segmentation and localization, noise reduction and deblurring of atomic-resolution scanning transmission electron microscopy (STEM) images with high precision and robustness is a challenging task. Although several conventional algorithms, such has thresholding, edge detection and clustering, can achieve reasonable performance in some predefined sceneries, they tend to fail when interferences from the background are strong and unpredictable. Particularly, for atomic-resolution STEM images, so far there is no well-established algorithm that is robust enough to segment or detect all atomic columns when there is large thickness variation in a recorded image. Herein, we report the development of a training library and a deep learning method that can perform robust and precise atom segmentation, localization, denoising, and super-resolution processing of experimental images. Despite using simulated images as training datasets, the deep-learning model can self-adapt to experimental STEM images and shows outstanding performance in atom detection and localization in challenging contrast conditions and the precision consistently outperforms the state-of-the-art two-dimensional Gaussian fit method. Taking a step further, we have deployed our deep-learning models to a desktop app with a graphical user interface and the app is free and open-source. We have also built a TEM ImageNet project website for easy browsing and downloading of the training data." @default.
- W3134276259 created "2021-03-15" @default.
- W3134276259 creator A5018734681 @default.
- W3134276259 creator A5049550458 @default.
- W3134276259 creator A5065037360 @default.
- W3134276259 creator A5078755167 @default.
- W3134276259 creator A5088918872 @default.
- W3134276259 date "2021-03-08" @default.
- W3134276259 modified "2023-10-18" @default.
- W3134276259 title "TEMImageNet training library and AtomSegNet deep-learning models for high-precision atom segmentation, localization, denoising, and deblurring of atomic-resolution images" @default.
- W3134276259 cites W1514928307 @default.
- W3134276259 cites W1764702882 @default.
- W3134276259 cites W1901129140 @default.
- W3134276259 cites W1969067576 @default.
- W3134276259 cites W1984584327 @default.
- W3134276259 cites W2005105852 @default.
- W3134276259 cites W2023089366 @default.
- W3134276259 cites W2071469153 @default.
- W3134276259 cites W2081891034 @default.
- W3134276259 cites W2123295993 @default.
- W3134276259 cites W2133059825 @default.
- W3134276259 cites W2154624311 @default.
- W3134276259 cites W2154977815 @default.
- W3134276259 cites W2156472837 @default.
- W3134276259 cites W2161603942 @default.
- W3134276259 cites W2223051473 @default.
- W3134276259 cites W2331050942 @default.
- W3134276259 cites W2468387181 @default.
- W3134276259 cites W2567187421 @default.
- W3134276259 cites W2616630373 @default.
- W3134276259 cites W2742903995 @default.
- W3134276259 cites W2771733300 @default.
- W3134276259 cites W2835210520 @default.
- W3134276259 cites W2887342585 @default.
- W3134276259 cites W2919115771 @default.
- W3134276259 cites W2971995780 @default.
- W3134276259 cites W3014405290 @default.
- W3134276259 cites W3080151776 @default.
- W3134276259 cites W3087891374 @default.
- W3134276259 cites W639708223 @default.
- W3134276259 doi "https://doi.org/10.1038/s41598-021-84499-w" @default.
- W3134276259 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7940611" @default.
- W3134276259 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33686158" @default.
- W3134276259 hasPublicationYear "2021" @default.
- W3134276259 type Work @default.
- W3134276259 sameAs 3134276259 @default.
- W3134276259 citedByCount "50" @default.
- W3134276259 countsByYear W31342762592021 @default.
- W3134276259 countsByYear W31342762592022 @default.
- W3134276259 countsByYear W31342762592023 @default.
- W3134276259 crossrefType "journal-article" @default.
- W3134276259 hasAuthorship W3134276259A5018734681 @default.
- W3134276259 hasAuthorship W3134276259A5049550458 @default.
- W3134276259 hasAuthorship W3134276259A5065037360 @default.
- W3134276259 hasAuthorship W3134276259A5078755167 @default.
- W3134276259 hasAuthorship W3134276259A5088918872 @default.
- W3134276259 hasBestOaLocation W31342762591 @default.
- W3134276259 hasConcept C104317684 @default.
- W3134276259 hasConcept C106430172 @default.
- W3134276259 hasConcept C108583219 @default.
- W3134276259 hasConcept C115961682 @default.
- W3134276259 hasConcept C153180895 @default.
- W3134276259 hasConcept C154945302 @default.
- W3134276259 hasConcept C185592680 @default.
- W3134276259 hasConcept C191178318 @default.
- W3134276259 hasConcept C2777693668 @default.
- W3134276259 hasConcept C31972630 @default.
- W3134276259 hasConcept C41008148 @default.
- W3134276259 hasConcept C55493867 @default.
- W3134276259 hasConcept C63479239 @default.
- W3134276259 hasConcept C73555534 @default.
- W3134276259 hasConcept C89600930 @default.
- W3134276259 hasConcept C9417928 @default.
- W3134276259 hasConceptScore W3134276259C104317684 @default.
- W3134276259 hasConceptScore W3134276259C106430172 @default.
- W3134276259 hasConceptScore W3134276259C108583219 @default.
- W3134276259 hasConceptScore W3134276259C115961682 @default.
- W3134276259 hasConceptScore W3134276259C153180895 @default.
- W3134276259 hasConceptScore W3134276259C154945302 @default.
- W3134276259 hasConceptScore W3134276259C185592680 @default.
- W3134276259 hasConceptScore W3134276259C191178318 @default.
- W3134276259 hasConceptScore W3134276259C2777693668 @default.
- W3134276259 hasConceptScore W3134276259C31972630 @default.
- W3134276259 hasConceptScore W3134276259C41008148 @default.
- W3134276259 hasConceptScore W3134276259C55493867 @default.
- W3134276259 hasConceptScore W3134276259C63479239 @default.
- W3134276259 hasConceptScore W3134276259C73555534 @default.
- W3134276259 hasConceptScore W3134276259C89600930 @default.
- W3134276259 hasConceptScore W3134276259C9417928 @default.
- W3134276259 hasFunder F4320306084 @default.
- W3134276259 hasFunder F4320332688 @default.
- W3134276259 hasIssue "1" @default.
- W3134276259 hasLocation W31342762591 @default.
- W3134276259 hasLocation W31342762592 @default.
- W3134276259 hasLocation W31342762593 @default.
- W3134276259 hasLocation W31342762594 @default.
- W3134276259 hasLocation W31342762595 @default.
- W3134276259 hasLocation W31342762596 @default.
- W3134276259 hasOpenAccess W3134276259 @default.
- W3134276259 hasPrimaryLocation W31342762591 @default.