Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134294501> ?p ?o ?g. }
- W3134294501 abstract "Abstract Background Individuals with multiple sclerosis (MS) are vulnerable to deficits in working memory, and the search for neural correlates of working memory in circumscribed areas has yielded inconclusive findings. Given the widespread neural alterations observed in MS, predictive modeling approaches that capitalize on whole-brain connectivity may better capture individual-level working memory in this population. Methods Here, we applied connectome-based predictive modeling to functional MRI data from working memory tasks in two independent samples with relapsing-remitting MS. In the internal validation sample ( n internal = 36), functional connectivity data were used to train a model through cross-validation to predict accuracy on the Paced Visual Serial Addition Test, a gold-standard measure of working memory in MS. We then tested its ability to predict performance on the N-back working memory task in the external validation sample ( n external = 36). Results The resulting model successfully predicted working memory in the internal validation sample but did not extend to the external sample. We also tested the generalizability of an existing model of working memory derived in healthy young adults to people with MS. It showed successful prediction in both MS samples, demonstrating its translational potential. We qualitatively explored differences between the healthy and MS models in intra- and inter-network connectivity amongst canonical networks. Discussion These findings suggest that connectome-based predictive models derived in people with MS may have limited generalizability. Instead, models identified in healthy individuals may offer superior generalizability to clinical samples, such as MS, and may serve as more useful targets for intervention. Impact Statement Working memory deficits in people with multiple sclerosis have important consequence for employment, leisure, and daily living activities. Identifying a functional connectivity-based marker that accurately captures individual differences in working memory may offer a useful target for cognitive rehabilitation. Manglani et al. demonstrate machine learning can be applied to whole-brain functional connectivity data to identify networks that predict individual-level working memory in people with multiple sclerosis. However, existing network-based models of working memory derived in healthy adults outperform those identified in multiple sclerosis, suggesting translational potential of brain networks derived in large, healthy samples for predicting cognition in multiple sclerosis." @default.
- W3134294501 created "2021-03-15" @default.
- W3134294501 creator A5009468774 @default.
- W3134294501 creator A5023283071 @default.
- W3134294501 creator A5035344940 @default.
- W3134294501 creator A5057390952 @default.
- W3134294501 creator A5088577330 @default.
- W3134294501 date "2021-03-02" @default.
- W3134294501 modified "2023-10-16" @default.
- W3134294501 title "Employing connectome-based models to predict working memory in multiple sclerosis" @default.
- W3134294501 cites W1491668984 @default.
- W3134294501 cites W1847168837 @default.
- W3134294501 cites W1976116556 @default.
- W3134294501 cites W1976682639 @default.
- W3134294501 cites W1981244178 @default.
- W3134294501 cites W1997354335 @default.
- W3134294501 cites W2004045349 @default.
- W3134294501 cites W2020519533 @default.
- W3134294501 cites W2022077443 @default.
- W3134294501 cites W2025660290 @default.
- W3134294501 cites W2047028564 @default.
- W3134294501 cites W2057279650 @default.
- W3134294501 cites W2065550957 @default.
- W3134294501 cites W2071608556 @default.
- W3134294501 cites W2078837612 @default.
- W3134294501 cites W2085561705 @default.
- W3134294501 cites W2087634319 @default.
- W3134294501 cites W2103253522 @default.
- W3134294501 cites W2111902267 @default.
- W3134294501 cites W2112165124 @default.
- W3134294501 cites W2120448275 @default.
- W3134294501 cites W2130632081 @default.
- W3134294501 cites W2132929719 @default.
- W3134294501 cites W2167479345 @default.
- W3134294501 cites W2170328207 @default.
- W3134294501 cites W2174056659 @default.
- W3134294501 cites W2460442457 @default.
- W3134294501 cites W2587272693 @default.
- W3134294501 cites W2611764076 @default.
- W3134294501 cites W2790651911 @default.
- W3134294501 cites W2792510705 @default.
- W3134294501 cites W2797722180 @default.
- W3134294501 cites W2799149837 @default.
- W3134294501 cites W2807683509 @default.
- W3134294501 cites W2836420707 @default.
- W3134294501 cites W2886105060 @default.
- W3134294501 cites W2888661131 @default.
- W3134294501 cites W2898333661 @default.
- W3134294501 cites W2911658427 @default.
- W3134294501 cites W2914765137 @default.
- W3134294501 cites W2920509382 @default.
- W3134294501 cites W2921709315 @default.
- W3134294501 cites W2945629352 @default.
- W3134294501 cites W2971784423 @default.
- W3134294501 cites W2982656987 @default.
- W3134294501 cites W2989949131 @default.
- W3134294501 cites W2999670461 @default.
- W3134294501 cites W3022984171 @default.
- W3134294501 cites W3024441204 @default.
- W3134294501 cites W3025257822 @default.
- W3134294501 cites W3036739736 @default.
- W3134294501 cites W3105560370 @default.
- W3134294501 cites W4233957217 @default.
- W3134294501 cites W4241343007 @default.
- W3134294501 doi "https://doi.org/10.1101/2021.03.01.432930" @default.
- W3134294501 hasPublicationYear "2021" @default.
- W3134294501 type Work @default.
- W3134294501 sameAs 3134294501 @default.
- W3134294501 citedByCount "0" @default.
- W3134294501 crossrefType "posted-content" @default.
- W3134294501 hasAuthorship W3134294501A5009468774 @default.
- W3134294501 hasAuthorship W3134294501A5023283071 @default.
- W3134294501 hasAuthorship W3134294501A5035344940 @default.
- W3134294501 hasAuthorship W3134294501A5057390952 @default.
- W3134294501 hasAuthorship W3134294501A5088577330 @default.
- W3134294501 hasBestOaLocation W31342945011 @default.
- W3134294501 hasConcept C138496976 @default.
- W3134294501 hasConcept C15744967 @default.
- W3134294501 hasConcept C169760540 @default.
- W3134294501 hasConcept C169900460 @default.
- W3134294501 hasConcept C180747234 @default.
- W3134294501 hasConcept C185592680 @default.
- W3134294501 hasConcept C198531522 @default.
- W3134294501 hasConcept C21963081 @default.
- W3134294501 hasConcept C27158222 @default.
- W3134294501 hasConcept C3018011982 @default.
- W3134294501 hasConcept C41008148 @default.
- W3134294501 hasConcept C43617362 @default.
- W3134294501 hasConcept C45715564 @default.
- W3134294501 hasConcept C97820695 @default.
- W3134294501 hasConceptScore W3134294501C138496976 @default.
- W3134294501 hasConceptScore W3134294501C15744967 @default.
- W3134294501 hasConceptScore W3134294501C169760540 @default.
- W3134294501 hasConceptScore W3134294501C169900460 @default.
- W3134294501 hasConceptScore W3134294501C180747234 @default.
- W3134294501 hasConceptScore W3134294501C185592680 @default.
- W3134294501 hasConceptScore W3134294501C198531522 @default.
- W3134294501 hasConceptScore W3134294501C21963081 @default.
- W3134294501 hasConceptScore W3134294501C27158222 @default.
- W3134294501 hasConceptScore W3134294501C3018011982 @default.