Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134295429> ?p ?o ?g. }
- W3134295429 endingPage "102278" @default.
- W3134295429 startingPage "102278" @default.
- W3134295429 abstract "•Nanotwinned TiO2 film possesses stronger preferred orientation than its FTO substrate•State-of-the-art nanoscanned X-ray Laue diffraction is used to unveil the mechanism•Twinning-mediated heteroepitaxy mainly leads to the texture improvement•This work helps to stimulate the rational design and synthesis of nanotwin materials Nanotwin structures in materials engender fascinating exotic properties. However, twinning usually alter the crystal orientation, resulting in random orientation and limited performances. Here, we report a well-aligned rutile TiO2 nanotwin film with superior preferential orientation than its isostructural substrate. By means of the synchrotron X-ray Laue nanodiffraction technique, the crystal orientation, twin boundaries, and deviatoric stresses of the film were quantitatively imaged at unprecedented spatial resolution to unravel the underlying mechanism of this anomalous alignment. Massive {101}-type rutile nanotwins were observed, and a crystallographic relationship of the heteroepitaxy was proposed. The rapid twinning and twin-controlled heteroepitaxy are responsible for the texture improvement. This work would open up opportunities for rational design of better twin-based functional materials, and implies the powerful capabilities of X-ray nanodiffraction technique for multidisciplinary applications. Nanotwin structures in materials engender fascinating exotic properties. However, twinning usually alter the crystal orientation, resulting in random orientation and limited performances. Here, we report a well-aligned rutile TiO2 nanotwin film with superior preferential orientation than its isostructural substrate. By means of the synchrotron X-ray Laue nanodiffraction technique, the crystal orientation, twin boundaries, and deviatoric stresses of the film were quantitatively imaged at unprecedented spatial resolution to unravel the underlying mechanism of this anomalous alignment. Massive {101}-type rutile nanotwins were observed, and a crystallographic relationship of the heteroepitaxy was proposed. The rapid twinning and twin-controlled heteroepitaxy are responsible for the texture improvement. This work would open up opportunities for rational design of better twin-based functional materials, and implies the powerful capabilities of X-ray nanodiffraction technique for multidisciplinary applications. Twinned crystals, especially the ordered and dense nanotwins, have attracted considerable interest due to their unique interface or defect structures, novel properties, and promising application prospects (Lu et al., 2009Lu K. Lu L. Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale.Science. 2009; 324: 349-352Crossref PubMed Scopus (1478) Google Scholar; Behrens et al., 2012Behrens M. Studt F. Kasatkin I. Kuhl S. Havecker M. Abild-Pedersen F. Zander S. Girgsdies F. Kurr P. Kniep B.L. et al.The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts.Science. 2012; 336: 893-897Crossref PubMed Scopus (1460) Google Scholar; Nie et al., 2015Nie A.M. Gan L.Y. Cheng Y.C. Li Q.Q. Yuan Y.F. Mashayek F. Wang H.T. Klie R. Schwingenschlogl U. Shahbazian-Yassar R. Twin boundary-assisted lithium ion transport.Nano Lett. 2015; 15: 610-615Crossref PubMed Scopus (58) Google Scholar; Zhu et al., 2018Zhu H. Li Q. Yang C. Zhang Q. Ren Y. Gao Q. Wang N. Lin K. Deng J. Chen J. et al.Twin crystal induced near zero thermal expansion in SnO2 nanowires.J. Am. Chem. Soc. 2018; 140: 7403-7406Crossref PubMed Scopus (16) Google Scholar; Liu et al., 2018Liu Y. Collins L. Proksch R. Kim S. Watson B.R. Doughty B. Calhoun T.R. Ahmadi M. Ievlev A.V. Jesse S. et al.Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite.Nat. Mater. 2018; 17: 1013-1019Crossref PubMed Scopus (87) Google Scholar). Generally, a coherent twin boundary (TB) could be deemed as a stable two-dimensional (2D) high-pressure polymorph of the parent crystal due to its higher atomic density (e.g., rutile TiO2 {101} twin (Hwang et al., 2000Hwang S.-L. Shen P. Chu H.-T. Yui T.-F. Nanometer-size α-PbO2-type TiO2 in garnet: a thermobarometer for ultrahigh-pressure metamorphism.Science. 2000; 288: 321-324Crossref PubMed Scopus (151) Google Scholar)). Similar to high-angle grain boundaries (GBs), TBs can serve as barriers against dislocation motion, that is, the hardening effect (Lu et al., 2009Lu K. Lu L. Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale.Science. 2009; 324: 349-352Crossref PubMed Scopus (1478) Google Scholar; Zhang et al., 2004Zhang X. Misra A. Wang H. Shen T.D. Nastasi M. Mitchell T.E. Hirth J.P. Hoagland R.G. Embury J.D. Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning.Acta Mater. 2004; 52: 995-1002Crossref Scopus (241) Google Scholar). The excess energy of coherent TBs is about one order of magnitude lower than that of the ordinary high-angle GBs, which together with the hardening effect make twinned materials possess higher hardness, higher stability, higher toughness, lower compressibility, and near zero thermal expansion (Tian et al., 2013Tian Y.J. Xu B. Yu D.L. Ma Y.M. Wang Y.B. Jiang Y.B. Hu W.T. Tang C.C. Gao Y.F. Luo K. et al.Ultrahard nanotwinned cubic boron nitride.Nature. 2013; 493: 385-388Crossref PubMed Scopus (521) Google Scholar; Huang et al., 2014Huang Q. Yu D. Xu B. Hu W. Ma Y. Wang Y. Zhao Z. Wen B. He J. Liu Z. Tian Y. Nanotwinned diamond with unprecedented hardness and stability.Nature. 2014; 510: 250-253Crossref PubMed Scopus (425) Google Scholar; Lu et al., 2004Lu L. Shen Y.F. Chen X.H. Qian L.H. Lu K. Ultrahigh strength and high electrical conductivity in copper.Science. 2004; 304: 422-426Crossref PubMed Scopus (2218) Google Scholar, Lu et al., 2009Lu K. Lu L. Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale.Science. 2009; 324: 349-352Crossref PubMed Scopus (1478) Google Scholar; Zhu et al., 2018Zhu H. Li Q. Yang C. Zhang Q. Ren Y. Gao Q. Wang N. Lin K. Deng J. Chen J. et al.Twin crystal induced near zero thermal expansion in SnO2 nanowires.J. Am. Chem. Soc. 2018; 140: 7403-7406Crossref PubMed Scopus (16) Google Scholar; Zhang et al., 2004Zhang X. Misra A. Wang H. Shen T.D. Nastasi M. Mitchell T.E. Hirth J.P. Hoagland R.G. Embury J.D. Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning.Acta Mater. 2004; 52: 995-1002Crossref Scopus (241) Google Scholar). In addition, the electrical conductivity of coherent TBs is higher than that of high-angle GBs, and the enhanced ionic transportation along TBs was observed in compounds such as WO3 and SnO2 (Lu et al., 2004Lu L. Shen Y.F. Chen X.H. Qian L.H. Lu K. Ultrahigh strength and high electrical conductivity in copper.Science. 2004; 304: 422-426Crossref PubMed Scopus (2218) Google Scholar; Aird and Salje, 2000Aird A. Salje E.K.H. Enhanced reactivity of domain walls in WO3 with sodium.Eur. Phys. J. B. 2000; 15: 205-210Google Scholar; Nie et al., 2015Nie A.M. Gan L.Y. Cheng Y.C. Li Q.Q. Yuan Y.F. Mashayek F. Wang H.T. Klie R. Schwingenschlogl U. Shahbazian-Yassar R. Twin boundary-assisted lithium ion transport.Nano Lett. 2015; 15: 610-615Crossref PubMed Scopus (58) Google Scholar). Moreover, the (photo)catalytic activity of a (photo)catalyst can be enhanced by nanotwin domains via twin-induced active sites or homojunctions caused by staggered band alignment (Behrens et al., 2012Behrens M. Studt F. Kasatkin I. Kuhl S. Havecker M. Abild-Pedersen F. Zander S. Girgsdies F. Kurr P. Kniep B.L. et al.The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts.Science. 2012; 336: 893-897Crossref PubMed Scopus (1460) Google Scholar; Liu et al., 2011Liu M. Wang L. Lu G. Yao X. Guo L. Twins in Cd1−xZnxS solid solution: highly efficient photocatalyst for hydrogen generation from water.Energy Environ. Sci. 2011; 4: 1372-1378Crossref Scopus (262) Google Scholar; Huang et al., 2018Huang M. Li C. Zhang L. Chen Q. Zhen Z. Li Z. Zhu H. Twin structure in BiVO4 photoanodes boosting water oxidation performance through enhanced charge separation and transport.Adv. Energy Mater. 2018; 8: 1802198Crossref Scopus (39) Google Scholar; Lu et al., 2020aLu Y. Chiang C.-Y. Huang E. Vertically nanotwinned TiO2 photoanodes with enhanced charge transport for efficient solar water splitting.Appl. Mater. Today. 2020; 20: 100707Crossref Scopus (3) Google Scholar, Lu et al., 2020bLu Y. Liu X. Liu H. Wang Y. Liu P. Zhu X. Zhang Y. Zhang H. Wang G. Lin Y. et al.Selective growth of high density anatase {101} twin boundaries on high energy {001} facets.Small Struct. 2020; : 2000025Crossref Google Scholar). As an important class of multifunctional materials, rutile TiO2 can be twinned on (101) and (301) planes (Hwang et al., 2000Hwang S.-L. Shen P. Chu H.-T. Yui T.-F. Nanometer-size α-PbO2-type TiO2 in garnet: a thermobarometer for ultrahigh-pressure metamorphism.Science. 2000; 288: 321-324Crossref PubMed Scopus (151) Google Scholar; Li et al., 1999Li G.L. Wang G.H. Hong J.M. Morphologies of rutile form TiO2 twins crystals.J. Mater. Sci. Lett. 1999; 18: 1243-1246Crossref Scopus (19) Google Scholar; Lu et al., 2012aLu W. Bruner B. Casillas G. He J. Jose-Yacaman M. Farmer P.J. Large scale synthesis of V-shaped rutile twinned nanorods.CrystEngComm. 2012; 14: 3120-3124Crossref Scopus (11) Google Scholar, Lu et al., 2020aLu Y. Chiang C.-Y. Huang E. Vertically nanotwinned TiO2 photoanodes with enhanced charge transport for efficient solar water splitting.Appl. Mater. Today. 2020; 20: 100707Crossref Scopus (3) Google Scholar; Jordan et al., 2018Jordan V. Dasireddy V.D.B.C. Likozar B. Podgornik A. Rečnik A. Material’s design beyond lateral attachment: twin-controlled spatial branching of rutile TiO2.Cryst. Growth Des. 2018; 18: 4484-4494Crossref Scopus (8) Google Scholar; Gao et al., 1992Gao Y. Merkle K.L. Chang H.L. Zhang T.J. Lam D.J. Study of defects and interfaces on the atomic scale in epitaxial TiO2 thin films on sapphire.Philos. Mag. A. 1992; 65: 1103-1125Crossref Scopus (23) Google Scholar; Daneu et al., 2007Daneu N. Schmid H. Recnik A. Mader W. Atomic structure and formation mechanism of (301) rutile twins from Diamantina (Brazil).Am. Miner. 2007; 92: 1789-1799Crossref Scopus (17) Google Scholar, Daneu et al., 2014Daneu N. Rečnik A. Mader W. Atomic structure and formation mechanism of (101) rutile twins from Diamantina (Brazil).Am. Mineral. 2014; 99: 612-624Crossref Scopus (18) Google Scholar). However, the synthetic TiO2 twins generally possess lower texture because twinning trends to alter the growth direction or crystal orientation, which is detrimental to practical applications and the discovery of novel properties, whereas the natural rutile twin minerals can directionally form on their substrates (Li et al., 1999Li G.L. Wang G.H. Hong J.M. Morphologies of rutile form TiO2 twins crystals.J. Mater. Sci. Lett. 1999; 18: 1243-1246Crossref Scopus (19) Google Scholar; Lu et al., 2012aLu W. Bruner B. Casillas G. He J. Jose-Yacaman M. Farmer P.J. Large scale synthesis of V-shaped rutile twinned nanorods.CrystEngComm. 2012; 14: 3120-3124Crossref Scopus (11) Google Scholar; Jordan et al., 2018Jordan V. Dasireddy V.D.B.C. Likozar B. Podgornik A. Rečnik A. Material’s design beyond lateral attachment: twin-controlled spatial branching of rutile TiO2.Cryst. Growth Des. 2018; 18: 4484-4494Crossref Scopus (8) Google Scholar; Gao et al., 1991Gao Y. Merkle K.L. Chang H.L.M. Lam T.J.Z.D.J. Microstructure of TiO2 rutile thin films deposited on (110) α−Al2O3.J. Mater. Res. 1991; 6: 2417-2426Crossref Scopus (17) Google Scholar, Gao et al., 1992Gao Y. Merkle K.L. Chang H.L. Zhang T.J. Lam D.J. Study of defects and interfaces on the atomic scale in epitaxial TiO2 thin films on sapphire.Philos. Mag. A. 1992; 65: 1103-1125Crossref Scopus (23) Google Scholar; Daneu et al., 2007Daneu N. Schmid H. Recnik A. Mader W. Atomic structure and formation mechanism of (301) rutile twins from Diamantina (Brazil).Am. Miner. 2007; 92: 1789-1799Crossref Scopus (17) Google Scholar, Daneu et al., 2014Daneu N. Rečnik A. Mader W. Atomic structure and formation mechanism of (101) rutile twins from Diamantina (Brazil).Am. Mineral. 2014; 99: 612-624Crossref Scopus (18) Google Scholar; Lee et al., 2006Lee J.-C. Park K.-S. Kim T.-G. Choi H.-J. Sung Y.-M. Controlled growth of high-quality TiO2 nanowires on sapphire and silica.Nanotechnology. 2006; 17: 4317-4321Crossref Scopus (89) Google Scholar; Sosnowchik et al., 2010Sosnowchik B.D. Chiamori H.C. Ding Y. Ha J.-Y. Wang Z.L. Lin L. Titanium dioxide nanoswords with highly reactive, photocatalytic facets.Nanotechnology. 2010; 21: 485601-485606Crossref PubMed Scopus (20) Google Scholar). Recently, we have successfully synthesized rutile TiO2 nanotwin films on fluorine-doped tin oxide (FTO) glass substrates with the rare b-axis preferred orientation (instead of the c-axis in common self-aligned rutile films) via a rapid nucleation/twinning strategy (Lu et al., 2020aLu Y. Chiang C.-Y. Huang E. Vertically nanotwinned TiO2 photoanodes with enhanced charge transport for efficient solar water splitting.Appl. Mater. Today. 2020; 20: 100707Crossref Scopus (3) Google Scholar). In this study, to uncover the underlying mechanism of the anomalous alignment, we applied the state-of-the-art scanning synchrotron X-ray Laue nanodiffraction technique (XND, see Supplemental information Figure S1) and the developed data analyzing software to image the crystal orientation, twin boundaries, and stresses at ∼80 nm spatial resolution. A rutile {101} twin model on the substrate was proposed to illustrate the anomalous orientation. This study will facilitate the rational design and fabrication of better nanostructured materials. Several methods can be adopted to determine the crystal orientation and grain boundaries in materials, including electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and electron tomography (Hsiao et al., 2012Hsiao H.Y. Liu C.M. Lin H.W. Liu T.C. Lu C.L. Huang Y.S. Chen C. Tu K.N. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper.Science. 2012; 336: 1007-1010Crossref PubMed Scopus (225) Google Scholar; Schwartz et al., 2009Schwartz A.J. Kumar M. Adams B.L. Field D.P. Electron Backscatter Diffraction in Materials Science. Springer, 2009Crossref Scopus (687) Google Scholar; Langille et al., 2012Langille M.R. Zhang J. Personick M.L. Li S. Mirkin C.A. Stepwise evolution of spherical seeds into 20-fold twinned icosahedra.Science. 2012; 337: 954-957Crossref PubMed Scopus (157) Google Scholar; Fultz and Howe, 2008Fultz B. Howe J.M. Transmission Electron Microscopy and Diffractometry of Materials. Springer, 2008Google Scholar; Midgley and Dunin-Borkowski, 2009Midgley P.A. Dunin-Borkowski R.E. Electron tomography and holography in materials science.Nat. Mater. 2009; 8: 271-280Crossref PubMed Scopus (605) Google Scholar). Although EBSD can image the orientation and twin boundaries of the crystals on the surface, the surface of the sample is required to be flat and the angular resolution is limited to 1–0.1° (Schwartz et al., 2009Schwartz A.J. Kumar M. Adams B.L. Field D.P. Electron Backscatter Diffraction in Materials Science. Springer, 2009Crossref Scopus (687) Google Scholar; Hsiao et al., 2012Hsiao H.Y. Liu C.M. Lin H.W. Liu T.C. Lu C.L. Huang Y.S. Chen C. Tu K.N. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper.Science. 2012; 336: 1007-1010Crossref PubMed Scopus (225) Google Scholar). TEM and electron tomography can characterize the crystal structure and twin boundaries or flat interfaces in an atomic resolution (Fultz and Howe, 2008Fultz B. Howe J.M. Transmission Electron Microscopy and Diffractometry of Materials. Springer, 2008Google Scholar; Midgley and Dunin-Borkowski, 2009Midgley P.A. Dunin-Borkowski R.E. Electron tomography and holography in materials science.Nat. Mater. 2009; 8: 271-280Crossref PubMed Scopus (605) Google Scholar; Langille et al., 2012Langille M.R. Zhang J. Personick M.L. Li S. Mirkin C.A. Stepwise evolution of spherical seeds into 20-fold twinned icosahedra.Science. 2012; 337: 954-957Crossref PubMed Scopus (157) Google Scholar), but the specimen preparation is complicated or the sample should be small/thin (generally, size/thickness <100 nm) due to the low penetration depth of electron beam. X-ray diffraction (XRD) in laboratory provides the ensemble-average crystal structure of multiple grains (size >1 μm). Alternatively, the high-brilliance X-ray nanobeam with strong penetration capacity enables the quantitative and nondestructive mapping of crystal orientation and buried grain boundaries of bulk/thick sample with larger strain and surface roughness by X-ray nanodiffraction (Chen et al., 2016Chen X. Dejoie C. Jiang T. Ku C.-S. Tamura N. Quantitative microstructural imaging by scanning Laue x-ray micro- and nanodiffraction.MRS Bull. 2016; 41: 445-453Crossref Scopus (24) Google Scholar), which makes it suitable for studying nanotwinned materials and in situ probing the processes of the growth and transformation of materials at extreme conditions, e.g., high/low temperature and high pressure/stress. The TiO2 films (Figure 1A) were synthesized on the FTO glass substrates by a rapid reaction method (see transparent methods) (Lu et al., 2020aLu Y. Chiang C.-Y. Huang E. Vertically nanotwinned TiO2 photoanodes with enhanced charge transport for efficient solar water splitting.Appl. Mater. Today. 2020; 20: 100707Crossref Scopus (3) Google Scholar). The XRD patterns (Figures 1B and S2) show that the TiO2 film and FTO substrate are of rutile structure and a preferred orientation of TiO2 film along the [010] direction, with a degree about 16 times stronger than that of the isostructural substrate. The scanning electron mircroscopy (SEM) image (Figure 1C) shows the ship-like rutile TiO2 crystals inverted on the substrate, with predominant exposed {111} and {110} facets (Lu et al., 2020aLu Y. Chiang C.-Y. Huang E. Vertically nanotwinned TiO2 photoanodes with enhanced charge transport for efficient solar water splitting.Appl. Mater. Today. 2020; 20: 100707Crossref Scopus (3) Google Scholar). Notably, there is a handful of crystals with reentrant shape, symbolizing twinned crystals. The high-resolution TEM image (Figure 1D) demonstrates that the sample possesses twin structure with a composition plane of (101). The thickness of the rutile twin film is about 2 μm (Figure S3). The dedicated XND setup of Taiwan Photon Source (TPS, beamline 21A) (Figure S1) can achieve an angular resolution down to 0.01°, with a nanoscale spatial resolution (∼80 nm in this work), and the deviatoric strain tensors resolution of 10−4 (Chung and Ice, 1999Chung J.-S. Ice G.E. Automated indexing for texture and strain measurement with broad-bandpass x-ray microbeams.J. Appl. Phys. 1999; 86: 5249-5255Crossref Scopus (239) Google Scholar). Figure 2A shows the SEM image of the rutile twin film surrounding the XND-scanned region. A representative XND image (No. 14993) of the film was indexed as rutile phase (see Figure 2B). The (0, K, 0) spot of TiO2 located near the center of the Laue image indicates that the a- or b-axis preferred orientation of the grain as inferred from the geometric relationship of the X-ray, sample, and detector (Figure S1). In the scanned region, there are 40,401 images recorded and auto-indexed. As shown in Figure 2C, the crystal orientation map (overlapped with grain boundaries) of the film along the normal direction (z axis, other directions can be find in Figures S4A and S4B) is predominantly occupied by green area with only little blue and red area, revealing that the TiO2 film is preferentially oriented with the (100) or (010) crystal planes parallel to the glass substrate. Previous studies showed that in the synthetic rutile phase TiO2 powder or natural rutile minerals, the {101} and {301} twins are usually present together, with around six times many former than the latter (Li et al., 1999Li G.L. Wang G.H. Hong J.M. Morphologies of rutile form TiO2 twins crystals.J. Mater. Sci. Lett. 1999; 18: 1243-1246Crossref Scopus (19) Google Scholar; Lu et al., 2012aLu W. Bruner B. Casillas G. He J. Jose-Yacaman M. Farmer P.J. Large scale synthesis of V-shaped rutile twinned nanorods.CrystEngComm. 2012; 14: 3120-3124Crossref Scopus (11) Google Scholar; Jordan et al., 2018Jordan V. Dasireddy V.D.B.C. Likozar B. Podgornik A. Rečnik A. Material’s design beyond lateral attachment: twin-controlled spatial branching of rutile TiO2.Cryst. Growth Des. 2018; 18: 4484-4494Crossref Scopus (8) Google Scholar; Gao et al., 1992Gao Y. Merkle K.L. Chang H.L. Zhang T.J. Lam D.J. Study of defects and interfaces on the atomic scale in epitaxial TiO2 thin films on sapphire.Philos. Mag. A. 1992; 65: 1103-1125Crossref Scopus (23) Google Scholar; Daneu et al., 2007Daneu N. Schmid H. Recnik A. Mader W. Atomic structure and formation mechanism of (301) rutile twins from Diamantina (Brazil).Am. Miner. 2007; 92: 1789-1799Crossref Scopus (17) Google Scholar, Daneu et al., 2014Daneu N. Rečnik A. Mader W. Atomic structure and formation mechanism of (101) rutile twins from Diamantina (Brazil).Am. Mineral. 2014; 99: 612-624Crossref Scopus (18) Google Scholar). In our case, the possible twin boundaries were identified from the ordinary grain boundaries by checking the rotation angle of adjacent gains and the parallelity of their rotation axis (Li et al., 2015Li Y. Wan L. Chen K. A look-up table based approach to characterize crystal twinning for synchrotron X-ray Laue microdiffraction scans.J. Appl. Crystallogr. 2015; 48: 747-757Crossref PubMed Scopus (14) Google Scholar). As shown in Figure 2D, the red dots or lines signify that the grain boundaries fit well with the {101} twin boundaries, judging from the fact that the rotation angle of the adjacent grains along the [010] axis is 114.4° for the rutile {101}/[010] twin. The blue dots represent that the GBs match well with the {301} TBs (the mutual rotation angle of the rutile {301}/[010] twin is 54.7° (Lee et al., 1993Lee W.Y. Bristowe P.D. Gao Y. Merkle K.L. The atomic structure of twin boundaries in rutile.Philos. Mag. Lett. 1993; 68: 309-314Crossref Scopus (38) Google Scholar)). Obviously, massive {101}-type rutile twins were detected, whereas only a few blue dots are observed in the map, which suggests the ratio and weight of the rutile {301} twins in the film are much lower than that reported elsewhere. We note that there are lots of nanotwins with thickness less than 80 nm in the film, which have been demonstrated by TEM observation (Lu et al., 2020aLu Y. Chiang C.-Y. Huang E. Vertically nanotwinned TiO2 photoanodes with enhanced charge transport for efficient solar water splitting.Appl. Mater. Today. 2020; 20: 100707Crossref Scopus (3) Google Scholar). Taking the XND image of No. 1998 as an example, the image can be indexed as two sets of Laue diffraction spots of rutile TiO2 and one set of Laue diffraction spots of F-doped SnO2 (Figure S5 and Data S1). The orientation of both crystals plotted as pole figures shown in Figure 3A reveal that two {010} poles and two {101} poles overlap, respectively, i.e., {101} as composition planes and [010] as a twin axis. The misorientation between both twinned components is 65.66°/[0.0025 1.0000 0.0005], agreeing well with the theoretical 65.57°/[0 1 0]. Moreover, the XND image of No. 14993 was indexed as one set of Laue diffraction spots of rutile TiO2 and two sets of Laue diffraction spots of F-doped SnO2 (Figures 2B and S6). The corresponding pole figures (Figure 3B) indicate that the preferential [010] orientation of F:SnO2 substrate is weaker than that of TiO2 overlayer, which is consistent with the XRD spectra, crystal orientation maps, and pole figures (Figures 1B, S4, and S7). During the process of rapid hydrothermal synthesis of our samples, there are roughly three mechanisms at play: (1) nucleation of twins in reactive solution, (2) attachment of twinned crystals or nuclei to the substrate, and (3) selective growth controlled by twin anisotropy. In growth twin, twinning is usually related to the stress partially generated by the presence of defects and impurities or the accidental attachment of crystalline grains during the initial stages of crystal growth (Penn and Banfield, 1998Penn R.L. Banfield J.F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2.Am. Mineral. 1998; 83: 1077-1082Crossref Scopus (429) Google Scholar, Penn and Banfield, 1999Penn R.L. Banfield J.F. Formation of rutile nuclei at anatase {112} twin interfaces and the phase transformation mechanism in nanocrystalline titania.Am. Mineral. 1999; 84: 871-876Crossref Scopus (210) Google Scholar; Lebensohn and Tomé, 1993Lebensohn R.A. Tomé C.N. A study of the stress state associated with twin nucleation and propagation in anisotropic materials.Philos. Mag. A. 1993; 67: 187-206Crossref Scopus (96) Google Scholar; Guermazi et al., 1985Guermazi M. Thevenard P. Blanchin M.G. Chemical twinning induced by chemical implantation in TiO2.Radiat. Eff. 1985; 91: 125-137Crossref Google Scholar; Bursill et al., 1969Bursill L.A. Hyde B.G. Terasaki O. Watanabe D. On a new family of titanium oxides and the nature of slightly-reduced rutile.Philos. Mag. 1969; 20: 347-359Crossref Scopus (90) Google Scholar). To reveal the mechanisms of twinning and attachment, crystallographic relationships and the stress distribution in the rutile nanotwin film were further analyzed. As shown in Figures 4A and S8, the uneven distribution of deviatoric stresses in rutile twin film suggests that the formation or attachment of twinned rutile crystals on the substrate is associated with the stress. In addition, twinned particles were discovered in the reaction solution, and their shape is related to that of twins grown on the substrate (Figure S9) (Lu et al., 2020aLu Y. Chiang C.-Y. Huang E. Vertically nanotwinned TiO2 photoanodes with enhanced charge transport for efficient solar water splitting.Appl. Mater. Today. 2020; 20: 100707Crossref Scopus (3) Google Scholar). During the dynamic dissolution of reaction precursor (TiN) at room temperature or rapidly elevated temperature, the generation of oxygen vacancies (Ti3+, see the electron paramagnetic resonance data in our previous work (Lu et al., 2020aLu Y. Chiang C.-Y. Huang E. Vertically nanotwinned TiO2 photoanodes with enhanced charge transport for efficient solar water splitting.Appl. Mater. Today. 2020; 20: 100707Crossref Scopus (3) Google Scholar)) or N species would induce twin nuclei to reduce the system energy at the initial reaction stage. Then, the rutile twin seeds attach and continuously grow on the F:SnO2 substrate. Hence, the F:SnO2 substrate is not the prerequisite for twinning but profoundly impact the heteroepitaxial growth and the preferred orientation of the TiO2 overlayer. An atomic model of rutile {101} twin on SnO2 was proposed, as shown in Figure 4C, based on the pole figures such as No. 1998, strain distributions, and previous studies (Lu et al., 2012bLu W. Bruner B. Casillas G. Mejia-Rosales S. Farmer P.J. Jose-Yacaman M. Direct oxygen imaging in titania nanocrystals.Nanotechnology. 2012; 23: 335706Crossref PubMed Scopus (6) Google Scholar; Lee et al., 1993Lee W.Y. Bristowe P.D. Gao Y. Merkle K.L. The atomic structure of twin boundaries in rutile.Philos. Mag. Lett. 1993; 68: 309-314Crossref Scopus (38) Google Scholar). Table 1 and Figure 4B show the lattice mismatch between rutile twin and substrate. It was found that the lattice mismatch between the isostructural F:SnO2 and one twin component (Grain A and twin boundary) is lower than 8%, which could facilitate its heteroepitaxy on F:SnO2 grains and the formation of the other twin component (Grain B) with [010]-preferred orientation regardless of the large (tensile or compressive) stress in the Grain B region (Steidl et al., 2017Steidl M. Koppka C. Winterfeld L. Peh K. Galiana B. Supplie O. Kleinschmidt P. Runge E. Hannappel T. Impact of rotational twin boundaries and lattice mismatch on III-V nanowire growth.ACS Nano. 2017; 11: 8679-8689Crossref PubMed Scopus (7) Google Scholar). Similar effect can be obtained in the case of the rutile {301} twin formation (Figure S10). Rutile twin can be grown on some types of hexagonal substrates, such as sapphire (Al2O3) (Gao et al., 1992Gao Y. Merkle K.L. Chang H.L. Zhang T.J. Lam D.J. Study of defects and interfaces on the atomic scale in epitaxial TiO2 thin films on sapphire.Philos. Mag. A. 1992; 65: 1103-1125Crossref Scopus (23) Google Scholar; Lee et al., 2006Lee J.-C. Park K.-S. Kim T.-G. Choi H.-J. Sung Y.-M. Controlled growth of high-quality TiO2 nanowires on sapphire and silica.Nanotechnology. 2006; 17: 4317-4321Crossref Scopus (89) Google Scholar) and hematite (α-Fe2O3) (Rečnik et al., 2015Rečnik A. Stanković N. Daneu N. Topotaxial reactions during the genesis of oriented rutile/hematite intergrowths from Mwinilunga (Zambia).Contrib. Mineral. Petr. 2015; 169: 19Crossref Scopus (19) Google Scholar) or formed from other hexagonal precursors, e.g., ilmenite (FeTiO3) (Janssen et al., 2010Janssen A. Putnis A. Geisler T. Putnis C.V. The experimental replacement of ilmenite by rutile in HCl solutions.Mineral. Mag. 2010; 74: 633-644Crossref Scopus (42) Google Scholar; Stanković et al., 2015Stanković N. Rečnik A. Daneu N. Topotaxial reactions during oxidation of ilmenite single crystal.J. Mater. Sci. 2015; 51: 958-968Crossref Scopus (4) Google Scholar; Daneu et al., 2014Daneu N. Rečnik A. Mader W. Atomic structure and formation mechanism of (101) rutile twins from Diamantina (Brazil).Am. Mineral. 2014; 99: 612-624Crossref Scopus (18) Google Scholar). Interestingly, the (010)-oriented SnO2 substrate possesses an approximatively hexagonal atomic arrangement, showing the importance of the lattice-matching attachment in the twinning and heteroepitaxial growth. The attachment of twinned rutile nanocrystals onto SnO2 substrate may be controlled by some mode of van der Waals-force-driven self-assembly processes, as described in references (Penn and Banfield, 1998Penn R.L. Banfield J.F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2.Am. Mineral. 1998; 83: 1077-1082Crossref Scopus (429) Google Scholar; Jordan et al., 2018Jordan V. Dasireddy V.D.B.C. Likozar B. Podgornik A. Rečnik A. Material’s design beyond lateral attachment: twin-controlled spatial branching of rutile TiO2.Cryst. Growth Des. 2018; 18: 4484-4494Crossref Scopus (8) Google Scholar). In this case, the orientation relationship between SnO2 and TiO2 is expected to be imperfect, as shown by XND data (Figure S4).Table 1Lattice mismatch between the rutile TiO2 {101} twin and F:SnO2 substrateGrain A regionTwin boundaryGrain B regiona (Å)c (Å)d (Å)h (Å)a or h (Å)c or d (Å)TiO24.59402.95902.73224.97534.59402.9590F:SnO24.76873.20362.87245.36445.36442.8724Mismatch3.73%7.94%5.00%7.53%15.47%−2.97% Open table in a new tab In previous studies, the untwinned rutile TiO2 films of nanorods or nanowires that were grown on FTO substrates commonly possess the [001]-preferred orientation, although the preferential orientation of FTO substrates is [010] direction (Lu et al., 2019Lu Y. Wei Z. Salke P.N. Yu L. Yan H. Enhanced electron transport in rutile TiO2 nanowires via H2S-assisted incorporation of dissolved silicon for solar-driven water splitting.Appl. Catal. B Environ. 2019; 244: 767-772Crossref Scopus (10) Google Scholar; Liu and Aydil, 2009Liu B. Aydil E.S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells.J. Am. Chem. Soc. 2009; 131: 3985-3990Crossref PubMed Scopus (2117) Google Scholar; Feng et al., 2008Feng X.J. Shankar K. Varghese O.K. Paulose M. Latempa T.J. Grimes C.A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications.Nano Lett. 2008; 8: 3781-3786Crossref PubMed Scopus (1119) Google Scholar). The erected growth of untwinned prismatic rutile on substrates could suppress the prostrate growth due to the fact that the fastest growth rate is along [001] direction, which can account for the self-aligned behavior of one-dimensional rutile arrays on [010]-oriented substrates. From the view point of surface free energy, the tips of rutile nanorods or nanowires are commonly exposed with reactive high-energy facets ({111}, {001}, or {101}), which favors the fastest growth along [001] direction and the formation of lateral low-energy {110} facets (Lu et al., 2019Lu Y. Wei Z. Salke P.N. Yu L. Yan H. Enhanced electron transport in rutile TiO2 nanowires via H2S-assisted incorporation of dissolved silicon for solar-driven water splitting.Appl. Catal. B Environ. 2019; 244: 767-772Crossref Scopus (10) Google Scholar, Lu et al., 2020aLu Y. Chiang C.-Y. Huang E. Vertically nanotwinned TiO2 photoanodes with enhanced charge transport for efficient solar water splitting.Appl. Mater. Today. 2020; 20: 100707Crossref Scopus (3) Google Scholar). However, in our case, after twinned TiO2 is formed, the [001] direction ceases to be the fastest growth direction. Instead, the twin plane becomes the fastest growth direction, pulling the rest of rutile crystal along its way. This is supported by the fact that the ship-like rutile twins mainly are predominated with {111} facets (some capping species may be formed in the rapid reaction environments). In effect, this type of geometric control actually governs crystal orientation in the TiO2 film, whereas the substrate only plays a minor role. Any crystals that have unfavorable orientations (with twin plane not vertical to the substrate) will be blocked by surrounding seeds, and only those that have twin plane oriented vertically to the substrate can grow freely. It is likely that they would grow in a similar manner on any substrate other than FTO, as described for ZnO films by Podlogar et al. (Podlogar et al., 2012Podlogar M. Richardson J.J. Vengust D. Daneu N. Samardžija Z. Bernik S. Rečnik A. Growth of transparent and conductive polycrystalline (0001)-ZnO films on glass substrates under low-temperature hydrothermal conditions.Adv. Funct. Mater. 2012; 22: 3136-3145Crossref Scopus (50) Google Scholar). Therefore, the discovered texture improvement could be ascribed to the rapid formation of twinned seeds on the preferred orientation of FTO substrate in the special reaction environments. In conclusion, the twin law and crystallographic texture in the anomalously aligned TiO2 nanotwin film were systematically analyzed by the synchrotron X-ray Laue nanodiffraction. The anomalous alignment was mainly ascribed to the twin-mediated heteroepitaxy with low lattice mismatch. This study also presents a state-of-the-art tool to investigate the twin structure, crystal orientation, and internal strain of functional materials at sub-100 nm resolution and would stimulate the widespread application of X-ray Laue nanodiffraction in materials science, geoscience, solar cells, and electronic and optoelectronic devices. With the rapid developments of X-ray focusing optics and advanced synchrotron light sources, we expect that the X-ray Laue nanodiffraction system will further enable the quantitative 2D/3D imaging of materials at several nanometers resolution." @default.
- W3134295429 created "2021-03-15" @default.
- W3134295429 creator A5022568034 @default.
- W3134295429 creator A5028276475 @default.
- W3134295429 creator A5037958532 @default.
- W3134295429 creator A5057837748 @default.
- W3134295429 creator A5058822693 @default.
- W3134295429 creator A5059023467 @default.
- W3134295429 creator A5067483347 @default.
- W3134295429 creator A5068323646 @default.
- W3134295429 date "2021-04-01" @default.
- W3134295429 modified "2023-10-18" @default.
- W3134295429 title "Twinning-mediated anomalous alignment of rutile films revealed by synchrotron X-ray nanodiffraction" @default.
- W3134295429 cites W1722919751 @default.
- W3134295429 cites W1872019155 @default.
- W3134295429 cites W1965177521 @default.
- W3134295429 cites W1971260269 @default.
- W3134295429 cites W1979555062 @default.
- W3134295429 cites W1985160047 @default.
- W3134295429 cites W1986649227 @default.
- W3134295429 cites W1997009546 @default.
- W3134295429 cites W2002891431 @default.
- W3134295429 cites W2011377242 @default.
- W3134295429 cites W2020443195 @default.
- W3134295429 cites W2026895301 @default.
- W3134295429 cites W2027439681 @default.
- W3134295429 cites W2040028885 @default.
- W3134295429 cites W2044108063 @default.
- W3134295429 cites W2047161147 @default.
- W3134295429 cites W2058285147 @default.
- W3134295429 cites W2059683457 @default.
- W3134295429 cites W2064389486 @default.
- W3134295429 cites W2075637177 @default.
- W3134295429 cites W2078763497 @default.
- W3134295429 cites W2078941825 @default.
- W3134295429 cites W2081540288 @default.
- W3134295429 cites W2084487562 @default.
- W3134295429 cites W2084763544 @default.
- W3134295429 cites W2102324093 @default.
- W3134295429 cites W2139402609 @default.
- W3134295429 cites W2141572726 @default.
- W3134295429 cites W2147735321 @default.
- W3134295429 cites W2151703332 @default.
- W3134295429 cites W2168327282 @default.
- W3134295429 cites W2223069167 @default.
- W3134295429 cites W2394736827 @default.
- W3134295429 cites W2418748272 @default.
- W3134295429 cites W2752529937 @default.
- W3134295429 cites W2807571862 @default.
- W3134295429 cites W2808662743 @default.
- W3134295429 cites W2888402103 @default.
- W3134295429 cites W2895605789 @default.
- W3134295429 cites W2902651003 @default.
- W3134295429 cites W2915670162 @default.
- W3134295429 cites W2945761546 @default.
- W3134295429 cites W3034253928 @default.
- W3134295429 cites W3087692675 @default.
- W3134295429 doi "https://doi.org/10.1016/j.isci.2021.102278" @default.
- W3134295429 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8005809" @default.
- W3134295429 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33817581" @default.
- W3134295429 hasPublicationYear "2021" @default.
- W3134295429 type Work @default.
- W3134295429 sameAs 3134295429 @default.
- W3134295429 citedByCount "1" @default.
- W3134295429 countsByYear W31342954292023 @default.
- W3134295429 crossrefType "journal-article" @default.
- W3134295429 hasAuthorship W3134295429A5022568034 @default.
- W3134295429 hasAuthorship W3134295429A5028276475 @default.
- W3134295429 hasAuthorship W3134295429A5037958532 @default.
- W3134295429 hasAuthorship W3134295429A5057837748 @default.
- W3134295429 hasAuthorship W3134295429A5058822693 @default.
- W3134295429 hasAuthorship W3134295429A5059023467 @default.
- W3134295429 hasAuthorship W3134295429A5067483347 @default.
- W3134295429 hasAuthorship W3134295429A5068323646 @default.
- W3134295429 hasBestOaLocation W31342954291 @default.
- W3134295429 hasConcept C120665830 @default.
- W3134295429 hasConcept C121332964 @default.
- W3134295429 hasConcept C16332341 @default.
- W3134295429 hasConcept C178790620 @default.
- W3134295429 hasConcept C185592680 @default.
- W3134295429 hasConcept C192562407 @default.
- W3134295429 hasConcept C207114421 @default.
- W3134295429 hasConcept C21368211 @default.
- W3134295429 hasConcept C2777889555 @default.
- W3134295429 hasConcept C2779328170 @default.
- W3134295429 hasConcept C50515024 @default.
- W3134295429 hasConcept C6840138 @default.
- W3134295429 hasConcept C8010536 @default.
- W3134295429 hasConcept C87976508 @default.
- W3134295429 hasConceptScore W3134295429C120665830 @default.
- W3134295429 hasConceptScore W3134295429C121332964 @default.
- W3134295429 hasConceptScore W3134295429C16332341 @default.
- W3134295429 hasConceptScore W3134295429C178790620 @default.
- W3134295429 hasConceptScore W3134295429C185592680 @default.
- W3134295429 hasConceptScore W3134295429C192562407 @default.
- W3134295429 hasConceptScore W3134295429C207114421 @default.
- W3134295429 hasConceptScore W3134295429C21368211 @default.
- W3134295429 hasConceptScore W3134295429C2777889555 @default.