Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134298049> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3134298049 abstract "Stock market prediction or forecasting is a challenging task to predict the upcoming stock values. Stock prices are nonstationary and highly noisy because stock markets are affected by a variety of factors. Traditionally, the next lag of time series is effectively forecast by a variety of techniques like Simple Exponential Smoothing, ARIMA. In particular, ARIMA has shown its success in accuracy and precision in predicting the next time-series lags. As part of the literature, very few studies have focused on Colombo Stock Exchange (CSE) to find new predictive approaches for the forecasting of high volatility stock price indexes. Different statistical approaches and economic data strategies have been widely applied to define market price movements and trends and the trade volume levels in CSE over the last ten years. This article explores whether and how the newly developed deep learning algorithms for the projection of time series data, such as the Back Propagation Neural Network, are greater than traditional algorithms. The results show that Deep learning algorithms like BPNN outperform traditionally based algorithms like the model ARIMA. The MAE and MSE values relative to ARIMA and BPNN, which suggests BPNN 's superiority to ARIMA." @default.
- W3134298049 created "2021-03-15" @default.
- W3134298049 creator A5025713347 @default.
- W3134298049 creator A5050475885 @default.
- W3134298049 date "2020-12-10" @default.
- W3134298049 modified "2023-09-27" @default.
- W3134298049 title "Stock Market Price Forecasting using ARIMA vs ANN; A Case study from CSE" @default.
- W3134298049 cites W1571138948 @default.
- W3134298049 cites W1966676388 @default.
- W3134298049 cites W1989130706 @default.
- W3134298049 cites W2334767398 @default.
- W3134298049 cites W2511206678 @default.
- W3134298049 cites W2606950124 @default.
- W3134298049 cites W2802914173 @default.
- W3134298049 cites W2806777472 @default.
- W3134298049 cites W2832219631 @default.
- W3134298049 cites W2884479933 @default.
- W3134298049 cites W2938308298 @default.
- W3134298049 cites W2979526509 @default.
- W3134298049 doi "https://doi.org/10.1109/icac51239.2020.9357288" @default.
- W3134298049 hasPublicationYear "2020" @default.
- W3134298049 type Work @default.
- W3134298049 sameAs 3134298049 @default.
- W3134298049 citedByCount "3" @default.
- W3134298049 countsByYear W31342980492022 @default.
- W3134298049 countsByYear W31342980492023 @default.
- W3134298049 crossrefType "proceedings-article" @default.
- W3134298049 hasAuthorship W3134298049A5025713347 @default.
- W3134298049 hasAuthorship W3134298049A5050475885 @default.
- W3134298049 hasConcept C10138342 @default.
- W3134298049 hasConcept C119857082 @default.
- W3134298049 hasConcept C124101348 @default.
- W3134298049 hasConcept C127413603 @default.
- W3134298049 hasConcept C133710760 @default.
- W3134298049 hasConcept C149782125 @default.
- W3134298049 hasConcept C151406439 @default.
- W3134298049 hasConcept C151730666 @default.
- W3134298049 hasConcept C154945302 @default.
- W3134298049 hasConcept C162324750 @default.
- W3134298049 hasConcept C175706884 @default.
- W3134298049 hasConcept C200870193 @default.
- W3134298049 hasConcept C204036174 @default.
- W3134298049 hasConcept C24338571 @default.
- W3134298049 hasConcept C2780299701 @default.
- W3134298049 hasConcept C2780762169 @default.
- W3134298049 hasConcept C31972630 @default.
- W3134298049 hasConcept C41008148 @default.
- W3134298049 hasConcept C50644808 @default.
- W3134298049 hasConcept C78519656 @default.
- W3134298049 hasConcept C86803240 @default.
- W3134298049 hasConcept C88389905 @default.
- W3134298049 hasConcept C91602232 @default.
- W3134298049 hasConceptScore W3134298049C10138342 @default.
- W3134298049 hasConceptScore W3134298049C119857082 @default.
- W3134298049 hasConceptScore W3134298049C124101348 @default.
- W3134298049 hasConceptScore W3134298049C127413603 @default.
- W3134298049 hasConceptScore W3134298049C133710760 @default.
- W3134298049 hasConceptScore W3134298049C149782125 @default.
- W3134298049 hasConceptScore W3134298049C151406439 @default.
- W3134298049 hasConceptScore W3134298049C151730666 @default.
- W3134298049 hasConceptScore W3134298049C154945302 @default.
- W3134298049 hasConceptScore W3134298049C162324750 @default.
- W3134298049 hasConceptScore W3134298049C175706884 @default.
- W3134298049 hasConceptScore W3134298049C200870193 @default.
- W3134298049 hasConceptScore W3134298049C204036174 @default.
- W3134298049 hasConceptScore W3134298049C24338571 @default.
- W3134298049 hasConceptScore W3134298049C2780299701 @default.
- W3134298049 hasConceptScore W3134298049C2780762169 @default.
- W3134298049 hasConceptScore W3134298049C31972630 @default.
- W3134298049 hasConceptScore W3134298049C41008148 @default.
- W3134298049 hasConceptScore W3134298049C50644808 @default.
- W3134298049 hasConceptScore W3134298049C78519656 @default.
- W3134298049 hasConceptScore W3134298049C86803240 @default.
- W3134298049 hasConceptScore W3134298049C88389905 @default.
- W3134298049 hasConceptScore W3134298049C91602232 @default.
- W3134298049 hasLocation W31342980491 @default.
- W3134298049 hasOpenAccess W3134298049 @default.
- W3134298049 hasPrimaryLocation W31342980491 @default.
- W3134298049 hasRelatedWork W2055405938 @default.
- W3134298049 hasRelatedWork W2529055134 @default.
- W3134298049 hasRelatedWork W2899803863 @default.
- W3134298049 hasRelatedWork W2944847417 @default.
- W3134298049 hasRelatedWork W3122644331 @default.
- W3134298049 hasRelatedWork W3134298049 @default.
- W3134298049 hasRelatedWork W4210246067 @default.
- W3134298049 hasRelatedWork W4236187983 @default.
- W3134298049 hasRelatedWork W4312473367 @default.
- W3134298049 hasRelatedWork W4380481999 @default.
- W3134298049 isParatext "false" @default.
- W3134298049 isRetracted "false" @default.
- W3134298049 magId "3134298049" @default.
- W3134298049 workType "article" @default.