Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134353086> ?p ?o ?g. }
- W3134353086 endingPage "153615" @default.
- W3134353086 startingPage "153615" @default.
- W3134353086 abstract "The rapidly increasing data demand from current Internet services, such as cloud computing and high-quality video streaming, is raising the pressure on network operators to provide reliable high-speed connections while keeping costs low. Without having to rely on the bandwidth expansion of optical waveguides or modulation level efficiency, one of the ways to increase spectral efficiency of a network is by the optimal utilization of already existing resources. For elastic optical networks (EON) this can be solved by the Routing, Modulation and Spectrum Assignment (RMSA). However, another problem arises, due to the nature of computer network traffic, that makes it difficult to assess the longevity of physical components and to plan a network to serve a maximum amount of bandwidth demand for predetermined time span. To help alleviating these problems, this paper presents an investigation of a novel technique for resource planning and consume estimation based on simulations. First, traffic matrix prediction is made using recurrent neural networks (RNN), and then simulations are ran to estimate the consumed bandwidth for a point in time. For the traffic forecasting, real traffic data has been used to train the RNN, obtained from an anonymous dataset containing the traffic history of the ABILENE and GEANT networks from the years 2004–2005, which is a relatively recent available dataset. Furthermore, heuristic algorithms are proposed to apply the RMSA to the predicted traffic, in a quasi-optimal manner, in order to minimize the use of network resources for future traffic, by releasing available capacity in the existing optical fiber links in an incremental traffic approach. The results show that the proposed RNN models are indeed capable of predicting the traffic matrices a month ahead, with low mean squared error. RMSA simulations were also performed using heuristics in order to estimate the consumed bandwidth in the context of EON networks, revealing that, for the proposed heuristics, the results favor the shortest path routing heuristic over the load balancing heuristic for a long-term bandwidth open capacity maximization and better resource savings." @default.
- W3134353086 created "2021-03-15" @default.
- W3134353086 creator A5003885393 @default.
- W3134353086 creator A5008249550 @default.
- W3134353086 creator A5012081890 @default.
- W3134353086 creator A5014256844 @default.
- W3134353086 creator A5067830525 @default.
- W3134353086 creator A5089340351 @default.
- W3134353086 date "2021-05-01" @default.
- W3134353086 modified "2023-10-14" @default.
- W3134353086 title "Resource planning on elastic optical networks using traffic matrix prediction" @default.
- W3134353086 cites W1671522217 @default.
- W3134353086 cites W1995165324 @default.
- W3134353086 cites W1998675732 @default.
- W3134353086 cites W2001800585 @default.
- W3134353086 cites W2011282943 @default.
- W3134353086 cites W2016176323 @default.
- W3134353086 cites W2037530672 @default.
- W3134353086 cites W2087385877 @default.
- W3134353086 cites W2089387193 @default.
- W3134353086 cites W2107655596 @default.
- W3134353086 cites W2112043482 @default.
- W3134353086 cites W2117406994 @default.
- W3134353086 cites W2117758468 @default.
- W3134353086 cites W2131399112 @default.
- W3134353086 cites W2145563843 @default.
- W3134353086 cites W2148523205 @default.
- W3134353086 cites W2273712022 @default.
- W3134353086 cites W2517406540 @default.
- W3134353086 cites W2528323426 @default.
- W3134353086 cites W2531059648 @default.
- W3134353086 cites W2589716680 @default.
- W3134353086 cites W2767290501 @default.
- W3134353086 cites W2771644755 @default.
- W3134353086 cites W2781285156 @default.
- W3134353086 cites W2784284493 @default.
- W3134353086 cites W2794108656 @default.
- W3134353086 cites W2806003270 @default.
- W3134353086 cites W2895537467 @default.
- W3134353086 cites W2909976513 @default.
- W3134353086 cites W2932646556 @default.
- W3134353086 cites W2963432161 @default.
- W3134353086 cites W3005919018 @default.
- W3134353086 cites W3041491159 @default.
- W3134353086 cites W3099113074 @default.
- W3134353086 cites W3145515391 @default.
- W3134353086 cites W3149747518 @default.
- W3134353086 cites W4236369288 @default.
- W3134353086 doi "https://doi.org/10.1016/j.aeue.2021.153615" @default.
- W3134353086 hasPublicationYear "2021" @default.
- W3134353086 type Work @default.
- W3134353086 sameAs 3134353086 @default.
- W3134353086 citedByCount "4" @default.
- W3134353086 countsByYear W31343530862022 @default.
- W3134353086 countsByYear W31343530862023 @default.
- W3134353086 crossrefType "journal-article" @default.
- W3134353086 hasAuthorship W3134353086A5003885393 @default.
- W3134353086 hasAuthorship W3134353086A5008249550 @default.
- W3134353086 hasAuthorship W3134353086A5012081890 @default.
- W3134353086 hasAuthorship W3134353086A5014256844 @default.
- W3134353086 hasAuthorship W3134353086A5067830525 @default.
- W3134353086 hasAuthorship W3134353086A5089340351 @default.
- W3134353086 hasConcept C110875604 @default.
- W3134353086 hasConcept C111919701 @default.
- W3134353086 hasConcept C120314980 @default.
- W3134353086 hasConcept C127162648 @default.
- W3134353086 hasConcept C136764020 @default.
- W3134353086 hasConcept C137246740 @default.
- W3134353086 hasConcept C158379750 @default.
- W3134353086 hasConcept C176715033 @default.
- W3134353086 hasConcept C201100257 @default.
- W3134353086 hasConcept C2776257435 @default.
- W3134353086 hasConcept C31258907 @default.
- W3134353086 hasConcept C41008148 @default.
- W3134353086 hasConcept C46451311 @default.
- W3134353086 hasConcept C5119721 @default.
- W3134353086 hasConcept C63969886 @default.
- W3134353086 hasConcept C79403827 @default.
- W3134353086 hasConcept C79974875 @default.
- W3134353086 hasConceptScore W3134353086C110875604 @default.
- W3134353086 hasConceptScore W3134353086C111919701 @default.
- W3134353086 hasConceptScore W3134353086C120314980 @default.
- W3134353086 hasConceptScore W3134353086C127162648 @default.
- W3134353086 hasConceptScore W3134353086C136764020 @default.
- W3134353086 hasConceptScore W3134353086C137246740 @default.
- W3134353086 hasConceptScore W3134353086C158379750 @default.
- W3134353086 hasConceptScore W3134353086C176715033 @default.
- W3134353086 hasConceptScore W3134353086C201100257 @default.
- W3134353086 hasConceptScore W3134353086C2776257435 @default.
- W3134353086 hasConceptScore W3134353086C31258907 @default.
- W3134353086 hasConceptScore W3134353086C41008148 @default.
- W3134353086 hasConceptScore W3134353086C46451311 @default.
- W3134353086 hasConceptScore W3134353086C5119721 @default.
- W3134353086 hasConceptScore W3134353086C63969886 @default.
- W3134353086 hasConceptScore W3134353086C79403827 @default.
- W3134353086 hasConceptScore W3134353086C79974875 @default.
- W3134353086 hasFunder F4320321091 @default.
- W3134353086 hasFunder F4320322025 @default.