Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134415212> ?p ?o ?g. }
- W3134415212 abstract "Abstract Although artificial intelligence algorithms are often developed and applied for narrow tasks, their implementation in other medical settings could help to improve patient care. Here we assess whether a deep-learning system for volumetric heart segmentation on computed tomography (CT) scans developed in cardiovascular radiology can optimize treatment planning in radiation oncology. The system was trained using multi-center data ( n = 858) with manual heart segmentations provided by cardiovascular radiologists. Validation of the system was performed in an independent real-world dataset of 5677 breast cancer patients treated with radiation therapy at the Dana-Farber/Brigham and Women’s Cancer Center between 2008–2018. In a subset of 20 patients, the performance of the system was compared to eight radiation oncology experts by assessing segmentation time, agreement between experts, and accuracy with and without deep-learning assistance. To compare the performance to segmentations used in the clinic, concordance and failures (defined as Dice < 0.85) of the system were evaluated in the entire dataset. The system was successfully applied without retraining. With deep-learning assistance, segmentation time significantly decreased (4.0 min [IQR 3.1–5.0] vs. 2.0 min [IQR 1.3–3.5]; p < 0.001), and agreement increased (Dice 0.95 [IQR = 0.02]; vs. 0.97 [IQR = 0.02], p < 0.001). Expert accuracy was similar with and without deep-learning assistance (Dice 0.92 [IQR = 0.02] vs. 0.92 [IQR = 0.02]; p = 0.48), and not significantly different from deep-learning-only segmentations (Dice 0.92 [IQR = 0.02]; p ≥ 0.1). In comparison to real-world data, the system showed high concordance (Dice 0.89 [IQR = 0.06]) across 5677 patients and a significantly lower failure rate ( p < 0.001). These results suggest that deep-learning algorithms can successfully be applied across medical specialties and improve clinical care beyond the original field of interest." @default.
- W3134415212 created "2021-03-15" @default.
- W3134415212 creator A5001452511 @default.
- W3134415212 creator A5001840887 @default.
- W3134415212 creator A5003214660 @default.
- W3134415212 creator A5015785708 @default.
- W3134415212 creator A5018154366 @default.
- W3134415212 creator A5024590816 @default.
- W3134415212 creator A5031598443 @default.
- W3134415212 creator A5032681364 @default.
- W3134415212 creator A5037380702 @default.
- W3134415212 creator A5039369605 @default.
- W3134415212 creator A5049331639 @default.
- W3134415212 creator A5056786907 @default.
- W3134415212 creator A5057811192 @default.
- W3134415212 creator A5063643578 @default.
- W3134415212 creator A5064724289 @default.
- W3134415212 creator A5073305219 @default.
- W3134415212 date "2021-03-05" @default.
- W3134415212 modified "2023-10-17" @default.
- W3134415212 title "Deep-learning system to improve the quality and efficiency of volumetric heart segmentation for breast cancer" @default.
- W3134415212 cites W1901129140 @default.
- W3134415212 cites W1979988663 @default.
- W3134415212 cites W1987869189 @default.
- W3134415212 cites W2013058506 @default.
- W3134415212 cites W2066064526 @default.
- W3134415212 cites W2073662365 @default.
- W3134415212 cites W2104153786 @default.
- W3134415212 cites W2154375587 @default.
- W3134415212 cites W2803760365 @default.
- W3134415212 cites W2885992575 @default.
- W3134415212 cites W2890430415 @default.
- W3134415212 cites W2895763047 @default.
- W3134415212 cites W2905810301 @default.
- W3134415212 cites W2908201961 @default.
- W3134415212 cites W2990353513 @default.
- W3134415212 cites W3036298167 @default.
- W3134415212 doi "https://doi.org/10.1038/s41746-021-00416-5" @default.
- W3134415212 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7935874" @default.
- W3134415212 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33674717" @default.
- W3134415212 hasPublicationYear "2021" @default.
- W3134415212 type Work @default.
- W3134415212 sameAs 3134415212 @default.
- W3134415212 citedByCount "10" @default.
- W3134415212 countsByYear W31344152122021 @default.
- W3134415212 countsByYear W31344152122022 @default.
- W3134415212 countsByYear W31344152122023 @default.
- W3134415212 crossrefType "journal-article" @default.
- W3134415212 hasAuthorship W3134415212A5001452511 @default.
- W3134415212 hasAuthorship W3134415212A5001840887 @default.
- W3134415212 hasAuthorship W3134415212A5003214660 @default.
- W3134415212 hasAuthorship W3134415212A5015785708 @default.
- W3134415212 hasAuthorship W3134415212A5018154366 @default.
- W3134415212 hasAuthorship W3134415212A5024590816 @default.
- W3134415212 hasAuthorship W3134415212A5031598443 @default.
- W3134415212 hasAuthorship W3134415212A5032681364 @default.
- W3134415212 hasAuthorship W3134415212A5037380702 @default.
- W3134415212 hasAuthorship W3134415212A5039369605 @default.
- W3134415212 hasAuthorship W3134415212A5049331639 @default.
- W3134415212 hasAuthorship W3134415212A5056786907 @default.
- W3134415212 hasAuthorship W3134415212A5057811192 @default.
- W3134415212 hasAuthorship W3134415212A5063643578 @default.
- W3134415212 hasAuthorship W3134415212A5064724289 @default.
- W3134415212 hasAuthorship W3134415212A5073305219 @default.
- W3134415212 hasBestOaLocation W31344152121 @default.
- W3134415212 hasConcept C108583219 @default.
- W3134415212 hasConcept C121608353 @default.
- W3134415212 hasConcept C126322002 @default.
- W3134415212 hasConcept C126838900 @default.
- W3134415212 hasConcept C154945302 @default.
- W3134415212 hasConcept C160798450 @default.
- W3134415212 hasConcept C19527891 @default.
- W3134415212 hasConcept C22029948 @default.
- W3134415212 hasConcept C2524010 @default.
- W3134415212 hasConcept C2989005 @default.
- W3134415212 hasConcept C33923547 @default.
- W3134415212 hasConcept C41008148 @default.
- W3134415212 hasConcept C509974204 @default.
- W3134415212 hasConcept C530470458 @default.
- W3134415212 hasConcept C71924100 @default.
- W3134415212 hasConcept C89600930 @default.
- W3134415212 hasConceptScore W3134415212C108583219 @default.
- W3134415212 hasConceptScore W3134415212C121608353 @default.
- W3134415212 hasConceptScore W3134415212C126322002 @default.
- W3134415212 hasConceptScore W3134415212C126838900 @default.
- W3134415212 hasConceptScore W3134415212C154945302 @default.
- W3134415212 hasConceptScore W3134415212C160798450 @default.
- W3134415212 hasConceptScore W3134415212C19527891 @default.
- W3134415212 hasConceptScore W3134415212C22029948 @default.
- W3134415212 hasConceptScore W3134415212C2524010 @default.
- W3134415212 hasConceptScore W3134415212C2989005 @default.
- W3134415212 hasConceptScore W3134415212C33923547 @default.
- W3134415212 hasConceptScore W3134415212C41008148 @default.
- W3134415212 hasConceptScore W3134415212C509974204 @default.
- W3134415212 hasConceptScore W3134415212C530470458 @default.
- W3134415212 hasConceptScore W3134415212C71924100 @default.
- W3134415212 hasConceptScore W3134415212C89600930 @default.
- W3134415212 hasFunder F4320306230 @default.
- W3134415212 hasFunder F4320320879 @default.
- W3134415212 hasFunder F4320332161 @default.