Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134437806> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3134437806 abstract "There is an increasing demand for data scientists in the current job market. Hence, many two-year and four-year colleges and universities started to offer Data Science degrees in the recent decade. In this paper, we describe an undergraduate Data Science curriculum that focuses on computational skills and mathematical foundations, with inclusion of a domain in business analytics. We expect this paper to be used by institutions as a guideline while planning their Data Science undergraduate degree. We reviewed around 100 undergraduate Data Science programs in the U.S. and summarized their common approaches and we also reviewed several Data Science curriculum development guidelines. Then, we developed our interdisciplinary undergraduate Data Science program that consists of (1) mathematics and statistics foundation courses covering discrete mathematics, linear algebra, introductory statistics, analysis of variance, and regression, (2) computer science foundation courses covering two programming languages (namely Python and Java), data structures, and database management, (3) core data science courses covering data science and visualization, statistical machine learning, data mining, and machine learning, and finally (4) courses from the business domain covering business intelligence analytics and predictive analytics. At the end of the degree program, we include a choice among a senior capstone course, a statistical consulting course, or an internship. We also discuss the collaboration between departments and colleges for this program." @default.
- W3134437806 created "2021-03-15" @default.
- W3134437806 creator A5002648147 @default.
- W3134437806 creator A5003799076 @default.
- W3134437806 creator A5035951004 @default.
- W3134437806 creator A5042763946 @default.
- W3134437806 creator A5045393924 @default.
- W3134437806 creator A5073977219 @default.
- W3134437806 creator A5090425280 @default.
- W3134437806 date "2021-03-03" @default.
- W3134437806 modified "2023-09-24" @default.
- W3134437806 title "Data Science Curriculum Design: A Case Study" @default.
- W3134437806 cites W1977341090 @default.
- W3134437806 cites W2562598153 @default.
- W3134437806 cites W2606384742 @default.
- W3134437806 cites W2791699391 @default.
- W3134437806 cites W2930219108 @default.
- W3134437806 doi "https://doi.org/10.1145/3408877.3432443" @default.
- W3134437806 hasPublicationYear "2021" @default.
- W3134437806 type Work @default.
- W3134437806 sameAs 3134437806 @default.
- W3134437806 citedByCount "5" @default.
- W3134437806 countsByYear W31344378062022 @default.
- W3134437806 countsByYear W31344378062023 @default.
- W3134437806 crossrefType "proceedings-article" @default.
- W3134437806 hasAuthorship W3134437806A5002648147 @default.
- W3134437806 hasAuthorship W3134437806A5003799076 @default.
- W3134437806 hasAuthorship W3134437806A5035951004 @default.
- W3134437806 hasAuthorship W3134437806A5042763946 @default.
- W3134437806 hasAuthorship W3134437806A5045393924 @default.
- W3134437806 hasAuthorship W3134437806A5073977219 @default.
- W3134437806 hasAuthorship W3134437806A5090425280 @default.
- W3134437806 hasConcept C105795698 @default.
- W3134437806 hasConcept C111281333 @default.
- W3134437806 hasConcept C11413529 @default.
- W3134437806 hasConcept C145420912 @default.
- W3134437806 hasConcept C154945302 @default.
- W3134437806 hasConcept C15744967 @default.
- W3134437806 hasConcept C172367668 @default.
- W3134437806 hasConcept C182109673 @default.
- W3134437806 hasConcept C19417346 @default.
- W3134437806 hasConcept C199360897 @default.
- W3134437806 hasConcept C2522767166 @default.
- W3134437806 hasConcept C2778293151 @default.
- W3134437806 hasConcept C33923547 @default.
- W3134437806 hasConcept C36464697 @default.
- W3134437806 hasConcept C41008148 @default.
- W3134437806 hasConcept C47177190 @default.
- W3134437806 hasConcept C519991488 @default.
- W3134437806 hasConcept C79158427 @default.
- W3134437806 hasConceptScore W3134437806C105795698 @default.
- W3134437806 hasConceptScore W3134437806C111281333 @default.
- W3134437806 hasConceptScore W3134437806C11413529 @default.
- W3134437806 hasConceptScore W3134437806C145420912 @default.
- W3134437806 hasConceptScore W3134437806C154945302 @default.
- W3134437806 hasConceptScore W3134437806C15744967 @default.
- W3134437806 hasConceptScore W3134437806C172367668 @default.
- W3134437806 hasConceptScore W3134437806C182109673 @default.
- W3134437806 hasConceptScore W3134437806C19417346 @default.
- W3134437806 hasConceptScore W3134437806C199360897 @default.
- W3134437806 hasConceptScore W3134437806C2522767166 @default.
- W3134437806 hasConceptScore W3134437806C2778293151 @default.
- W3134437806 hasConceptScore W3134437806C33923547 @default.
- W3134437806 hasConceptScore W3134437806C36464697 @default.
- W3134437806 hasConceptScore W3134437806C41008148 @default.
- W3134437806 hasConceptScore W3134437806C47177190 @default.
- W3134437806 hasConceptScore W3134437806C519991488 @default.
- W3134437806 hasConceptScore W3134437806C79158427 @default.
- W3134437806 hasLocation W31344378061 @default.
- W3134437806 hasOpenAccess W3134437806 @default.
- W3134437806 hasPrimaryLocation W31344378061 @default.
- W3134437806 hasRelatedWork W2498778289 @default.
- W3134437806 hasRelatedWork W2891534466 @default.
- W3134437806 hasRelatedWork W2942183914 @default.
- W3134437806 hasRelatedWork W3125841305 @default.
- W3134437806 hasRelatedWork W3138801212 @default.
- W3134437806 hasRelatedWork W3152755636 @default.
- W3134437806 hasRelatedWork W3158351066 @default.
- W3134437806 hasRelatedWork W3217698631 @default.
- W3134437806 hasRelatedWork W4286750062 @default.
- W3134437806 hasRelatedWork W4306809819 @default.
- W3134437806 isParatext "false" @default.
- W3134437806 isRetracted "false" @default.
- W3134437806 magId "3134437806" @default.
- W3134437806 workType "article" @default.