Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134445065> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3134445065 endingPage "75" @default.
- W3134445065 startingPage "75" @default.
- W3134445065 abstract "Functional connectivity (FC) studies have demonstrated the overarching value of studying the brain and its disorders through the undirected weighted graph of fMRI correlation matrix. Most of the work with the FC, however, depends on the way the connectivity is computed, and further depends on the manual post-hoc analysis of the FC matrices. In this work we propose a deep learning architecture BrainGNN that learns the connectivity structure as part of learning to classify subjects. It simultaneously applies a graphical neural network to this learned graph and learns to select a sparse subset of brain regions important to the prediction task. We demonstrate the model's state-of-the-art classification performance on a schizophrenia fMRI dataset and demonstrate how introspection leads to disorder relevant findings. The graphs learned by the model exhibit strong class discrimination and the sparse subset of relevant regions are consistent with the schizophrenia literature." @default.
- W3134445065 created "2021-03-15" @default.
- W3134445065 creator A5019983016 @default.
- W3134445065 creator A5032850756 @default.
- W3134445065 creator A5081150533 @default.
- W3134445065 creator A5082230429 @default.
- W3134445065 date "2021-02-26" @default.
- W3134445065 modified "2023-10-16" @default.
- W3134445065 title "A Deep Learning Model for Data-Driven Discovery of Functional Connectivity" @default.
- W3134445065 cites W1943480391 @default.
- W3134445065 cites W2041951497 @default.
- W3134445065 cites W2058046532 @default.
- W3134445065 cites W2079590167 @default.
- W3134445065 cites W2094510930 @default.
- W3134445065 cites W2102076075 @default.
- W3134445065 cites W2112796928 @default.
- W3134445065 cites W2159242554 @default.
- W3134445065 cites W2336687820 @default.
- W3134445065 cites W2526511911 @default.
- W3134445065 cites W2583114732 @default.
- W3134445065 cites W2591711955 @default.
- W3134445065 cites W2772564583 @default.
- W3134445065 cites W2806489700 @default.
- W3134445065 cites W2884781986 @default.
- W3134445065 cites W2931005391 @default.
- W3134445065 cites W2953079170 @default.
- W3134445065 cites W2964199361 @default.
- W3134445065 cites W3037470349 @default.
- W3134445065 cites W3087237868 @default.
- W3134445065 cites W3088350896 @default.
- W3134445065 cites W3089503988 @default.
- W3134445065 cites W3092996470 @default.
- W3134445065 cites W3100777112 @default.
- W3134445065 doi "https://doi.org/10.3390/a14030075" @default.
- W3134445065 hasPublicationYear "2021" @default.
- W3134445065 type Work @default.
- W3134445065 sameAs 3134445065 @default.
- W3134445065 citedByCount "10" @default.
- W3134445065 countsByYear W31344450652022 @default.
- W3134445065 countsByYear W31344450652023 @default.
- W3134445065 crossrefType "journal-article" @default.
- W3134445065 hasAuthorship W3134445065A5019983016 @default.
- W3134445065 hasAuthorship W3134445065A5032850756 @default.
- W3134445065 hasAuthorship W3134445065A5081150533 @default.
- W3134445065 hasAuthorship W3134445065A5082230429 @default.
- W3134445065 hasBestOaLocation W31344450651 @default.
- W3134445065 hasConcept C108583219 @default.
- W3134445065 hasConcept C119857082 @default.
- W3134445065 hasConcept C132525143 @default.
- W3134445065 hasConcept C153180895 @default.
- W3134445065 hasConcept C154945302 @default.
- W3134445065 hasConcept C155846161 @default.
- W3134445065 hasConcept C15744967 @default.
- W3134445065 hasConcept C162324750 @default.
- W3134445065 hasConcept C169760540 @default.
- W3134445065 hasConcept C187736073 @default.
- W3134445065 hasConcept C2780451532 @default.
- W3134445065 hasConcept C3018011982 @default.
- W3134445065 hasConcept C41008148 @default.
- W3134445065 hasConcept C80444323 @default.
- W3134445065 hasConceptScore W3134445065C108583219 @default.
- W3134445065 hasConceptScore W3134445065C119857082 @default.
- W3134445065 hasConceptScore W3134445065C132525143 @default.
- W3134445065 hasConceptScore W3134445065C153180895 @default.
- W3134445065 hasConceptScore W3134445065C154945302 @default.
- W3134445065 hasConceptScore W3134445065C155846161 @default.
- W3134445065 hasConceptScore W3134445065C15744967 @default.
- W3134445065 hasConceptScore W3134445065C162324750 @default.
- W3134445065 hasConceptScore W3134445065C169760540 @default.
- W3134445065 hasConceptScore W3134445065C187736073 @default.
- W3134445065 hasConceptScore W3134445065C2780451532 @default.
- W3134445065 hasConceptScore W3134445065C3018011982 @default.
- W3134445065 hasConceptScore W3134445065C41008148 @default.
- W3134445065 hasConceptScore W3134445065C80444323 @default.
- W3134445065 hasFunder F4320332161 @default.
- W3134445065 hasIssue "3" @default.
- W3134445065 hasLocation W31344450651 @default.
- W3134445065 hasLocation W31344450652 @default.
- W3134445065 hasOpenAccess W3134445065 @default.
- W3134445065 hasPrimaryLocation W31344450651 @default.
- W3134445065 hasRelatedWork W3014300295 @default.
- W3134445065 hasRelatedWork W3164822677 @default.
- W3134445065 hasRelatedWork W4223943233 @default.
- W3134445065 hasRelatedWork W4225161397 @default.
- W3134445065 hasRelatedWork W4309045103 @default.
- W3134445065 hasRelatedWork W4312200629 @default.
- W3134445065 hasRelatedWork W4360585206 @default.
- W3134445065 hasRelatedWork W4364306694 @default.
- W3134445065 hasRelatedWork W4380075502 @default.
- W3134445065 hasRelatedWork W4380086463 @default.
- W3134445065 hasVolume "14" @default.
- W3134445065 isParatext "false" @default.
- W3134445065 isRetracted "false" @default.
- W3134445065 magId "3134445065" @default.
- W3134445065 workType "article" @default.