Matches in SemOpenAlex for { <https://semopenalex.org/work/W3134489511> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3134489511 endingPage "660" @default.
- W3134489511 startingPage "651" @default.
- W3134489511 abstract "Availability of data from sensors is becoming easy and in abundance due to the era of industrial revolution 4.0. These data carry rich information about the health condition of the process and equipments in industries along with the current status of the process from which they are acquired. Analysis of this data reveals the interaction and impact among variables involving the control loop. Forecasting and prediction of sensor data is important for the effective functioning of the predictive maintenance stream. Time stamped data can be predicted using time series forecasting techniques. In this paper, the temperature data from a temperature sensor installed to a hydraulic rig is considered for the analysis. The univariate data is predicted for future cycles using times series forecasting techniques. Comparison study between conventional and machine learning algorithms is well defined. These techniques are evaluated using different accuracy metrics like MAE, MSE and RMSE." @default.
- W3134489511 created "2021-03-15" @default.
- W3134489511 creator A5028869304 @default.
- W3134489511 creator A5029431671 @default.
- W3134489511 creator A5047358973 @default.
- W3134489511 date "2021-01-01" @default.
- W3134489511 modified "2023-10-02" @default.
- W3134489511 title "Univariate Sensor Data Prediction Using Conventional and Machine Learning Based Time Series Techniques" @default.
- W3134489511 cites W1582873796 @default.
- W3134489511 cites W2016210396 @default.
- W3134489511 cites W2023146543 @default.
- W3134489511 cites W2087553530 @default.
- W3134489511 cites W2119355585 @default.
- W3134489511 cites W2146588145 @default.
- W3134489511 cites W2676890506 @default.
- W3134489511 cites W2890188851 @default.
- W3134489511 cites W2891069945 @default.
- W3134489511 cites W2900296094 @default.
- W3134489511 cites W2907345037 @default.
- W3134489511 cites W2952133925 @default.
- W3134489511 cites W2962940008 @default.
- W3134489511 doi "https://doi.org/10.1007/978-981-15-8221-9_58" @default.
- W3134489511 hasPublicationYear "2021" @default.
- W3134489511 type Work @default.
- W3134489511 sameAs 3134489511 @default.
- W3134489511 citedByCount "1" @default.
- W3134489511 countsByYear W31344895112023 @default.
- W3134489511 crossrefType "book-chapter" @default.
- W3134489511 hasAuthorship W3134489511A5028869304 @default.
- W3134489511 hasAuthorship W3134489511A5029431671 @default.
- W3134489511 hasAuthorship W3134489511A5047358973 @default.
- W3134489511 hasConcept C105795698 @default.
- W3134489511 hasConcept C111919701 @default.
- W3134489511 hasConcept C119857082 @default.
- W3134489511 hasConcept C124101348 @default.
- W3134489511 hasConcept C127413603 @default.
- W3134489511 hasConcept C139945424 @default.
- W3134489511 hasConcept C143724316 @default.
- W3134489511 hasConcept C151406439 @default.
- W3134489511 hasConcept C151730666 @default.
- W3134489511 hasConcept C161584116 @default.
- W3134489511 hasConcept C199163554 @default.
- W3134489511 hasConcept C33923547 @default.
- W3134489511 hasConcept C41008148 @default.
- W3134489511 hasConcept C86803240 @default.
- W3134489511 hasConcept C98045186 @default.
- W3134489511 hasConceptScore W3134489511C105795698 @default.
- W3134489511 hasConceptScore W3134489511C111919701 @default.
- W3134489511 hasConceptScore W3134489511C119857082 @default.
- W3134489511 hasConceptScore W3134489511C124101348 @default.
- W3134489511 hasConceptScore W3134489511C127413603 @default.
- W3134489511 hasConceptScore W3134489511C139945424 @default.
- W3134489511 hasConceptScore W3134489511C143724316 @default.
- W3134489511 hasConceptScore W3134489511C151406439 @default.
- W3134489511 hasConceptScore W3134489511C151730666 @default.
- W3134489511 hasConceptScore W3134489511C161584116 @default.
- W3134489511 hasConceptScore W3134489511C199163554 @default.
- W3134489511 hasConceptScore W3134489511C33923547 @default.
- W3134489511 hasConceptScore W3134489511C41008148 @default.
- W3134489511 hasConceptScore W3134489511C86803240 @default.
- W3134489511 hasConceptScore W3134489511C98045186 @default.
- W3134489511 hasLocation W31344895111 @default.
- W3134489511 hasOpenAccess W3134489511 @default.
- W3134489511 hasPrimaryLocation W31344895111 @default.
- W3134489511 hasRelatedWork W189280425 @default.
- W3134489511 hasRelatedWork W2118640767 @default.
- W3134489511 hasRelatedWork W2262133315 @default.
- W3134489511 hasRelatedWork W2267219236 @default.
- W3134489511 hasRelatedWork W2350758509 @default.
- W3134489511 hasRelatedWork W2354804553 @default.
- W3134489511 hasRelatedWork W2375884488 @default.
- W3134489511 hasRelatedWork W2773554974 @default.
- W3134489511 hasRelatedWork W3121186460 @default.
- W3134489511 hasRelatedWork W4205211346 @default.
- W3134489511 isParatext "false" @default.
- W3134489511 isRetracted "false" @default.
- W3134489511 magId "3134489511" @default.
- W3134489511 workType "book-chapter" @default.